Files
QuaternionEngine/src/scene/vk_scene_picking.cpp

608 lines
19 KiB
C++

#include "vk_scene.h"
#include "core/device/swapchain.h"
#include "core/context.h"
#include "mesh_bvh.h"
#include "glm/gtx/transform.hpp"
#include <glm/gtc/matrix_transform.hpp>
#include "glm/gtx/norm.inl"
#include <algorithm>
#include <array>
#include <cmath>
#include <limits>
namespace
{
struct BoundsHitDebug
{
bool usedBVH = false;
bool bvhHit = false;
bool fallbackBox = false;
};
// Ray / oriented-box intersection in world space using object-local AABB.
// Returns true when hit; outWorldHit is the closest hit point in world space.
bool intersect_ray_box(const glm::vec3 &rayOrigin,
const glm::vec3 &rayDir,
const Bounds &bounds,
const glm::mat4 &worldTransform,
glm::vec3 &outWorldHit)
{
if (glm::length2(rayDir) < 1e-8f)
{
return false;
}
// Transform ray into local space of the bounds for precise box test.
glm::mat4 invM = glm::inverse(worldTransform);
glm::vec3 localOrigin = glm::vec3(invM * glm::vec4(rayOrigin, 1.0f));
glm::vec3 localDir = glm::vec3(invM * glm::vec4(rayDir, 0.0f));
if (glm::length2(localDir) < 1e-8f)
{
return false;
}
localDir = glm::normalize(localDir);
glm::vec3 minB = bounds.origin - bounds.extents;
glm::vec3 maxB = bounds.origin + bounds.extents;
float tMin = 0.0f;
float tMax = std::numeric_limits<float>::max();
for (int axis = 0; axis < 3; ++axis)
{
float o = localOrigin[axis];
float d = localDir[axis];
if (std::abs(d) < 1e-8f)
{
// Ray parallel to slab: must be inside to intersect.
if (o < minB[axis] || o > maxB[axis])
{
return false;
}
}
else
{
float invD = 1.0f / d;
float t1 = (minB[axis] - o) * invD;
float t2 = (maxB[axis] - o) * invD;
if (t1 > t2)
{
std::swap(t1, t2);
}
tMin = std::max(tMin, t1);
tMax = std::min(tMax, t2);
if (tMax < tMin)
{
return false;
}
}
}
if (tMax < 0.0f)
{
return false;
}
// Choose the closest intersection in front of the ray origin.
// If the ray starts inside the box (tMin <= 0), use the exit point tMax.
float tHit = tMin;
if (tHit <= 0.0f)
{
tHit = tMax;
}
if (tHit <= 0.0f)
{
return false;
}
glm::vec3 localHit = localOrigin + tHit * localDir;
glm::vec3 worldHit = glm::vec3(worldTransform * glm::vec4(localHit, 1.0f));
outWorldHit = worldHit;
return true;
}
// Quick conservative ray / bounding-sphere test in world space.
// Returns false when the ray misses the sphere; on hit, outT is the
// closest positive intersection distance along the ray direction.
bool intersect_ray_sphere(const glm::vec3 &rayOrigin,
const glm::vec3 &rayDir,
const Bounds &bounds,
const glm::mat4 &worldTransform,
float &outT)
{
// Sphere center is bounds.origin transformed to world.
glm::vec3 centerWorld = glm::vec3(worldTransform * glm::vec4(bounds.origin, 1.0f));
// Approximate world-space radius by scaling with the maximum axis scale.
glm::vec3 sx = glm::vec3(worldTransform[0]);
glm::vec3 sy = glm::vec3(worldTransform[1]);
glm::vec3 sz = glm::vec3(worldTransform[2]);
float maxScale = std::max({glm::length(sx), glm::length(sy), glm::length(sz)});
float radiusWorld = bounds.sphereRadius * maxScale;
if (radiusWorld <= 0.0f)
{
return false;
}
glm::vec3 oc = rayOrigin - centerWorld;
float b = glm::dot(oc, rayDir);
float c = glm::dot(oc, oc) - radiusWorld * radiusWorld;
float disc = b * b - c;
if (disc < 0.0f)
{
return false;
}
float s = std::sqrt(disc);
float t0 = -b - s;
float t1 = -b + s;
float t = t0 >= 0.0f ? t0 : t1;
if (t < 0.0f)
{
return false;
}
outT = t;
return true;
}
// Ray / capsule intersection in world space. Capsule is aligned with local Y axis
// and reconstructed from Bounds.origin/extents, assuming extents.x/z ~= radius
// and extents.y ~= halfHeight + radius (AABB center/half-size convention).
bool intersect_ray_capsule(const glm::vec3 &rayOrigin,
const glm::vec3 &rayDir,
const Bounds &bounds,
const glm::mat4 &worldTransform,
glm::vec3 &outWorldHit)
{
if (glm::length2(rayDir) < 1e-8f)
{
return false;
}
// Transform ray into object-local space.
glm::mat4 invM = glm::inverse(worldTransform);
glm::vec3 localOrigin = glm::vec3(invM * glm::vec4(rayOrigin, 1.0f));
glm::vec3 localDir = glm::vec3(invM * glm::vec4(rayDir, 0.0f));
if (glm::length2(localDir) < 1e-8f)
{
return false;
}
localDir = glm::normalize(localDir);
// Work in capsule-local space where Bounds.origin is at (0,0,0).
glm::vec3 ro = localOrigin - bounds.origin;
glm::vec3 rd = localDir;
float radius = std::max(bounds.extents.x, bounds.extents.z);
if (radius <= 0.0f)
{
return false;
}
// extents.y is (halfCylinder + radius) for a symmetric capsule.
float halfSegment = std::max(bounds.extents.y - radius, 0.0f);
float tHit = std::numeric_limits<float>::max();
bool hit = false;
// 1) Cylinder part around Y axis: x^2 + z^2 = r^2, |y| <= halfSegment.
float a = rd.x * rd.x + rd.z * rd.z;
float b = 2.0f * (ro.x * rd.x + ro.z * rd.z);
float c = ro.x * ro.x + ro.z * ro.z - radius * radius;
if (std::abs(a) > 1e-8f)
{
float disc = b * b - 4.0f * a * c;
if (disc >= 0.0f)
{
float s = std::sqrt(disc);
float invDen = 0.5f / a;
float t0 = (-b - s) * invDen;
float t1 = (-b + s) * invDen;
if (t0 > t1) std::swap(t0, t1);
auto tryCylHit = [&](float t)
{
if (t < 0.0f || t >= tHit)
{
return;
}
glm::vec3 p = ro + rd * t;
if (std::abs(p.y) <= halfSegment + 1e-4f)
{
tHit = t;
hit = true;
}
};
tryCylHit(t0);
tryCylHit(t1);
}
}
// 2) Spherical caps at y = +/- halfSegment.
auto intersectCap = [&](float capY)
{
glm::vec3 center(0.0f, capY, 0.0f);
glm::vec3 oc = ro - center;
float b2 = glm::dot(oc, rd);
float c2 = glm::dot(oc, oc) - radius * radius;
float disc = b2 * b2 - c2;
if (disc < 0.0f)
{
return;
}
float s = std::sqrt(disc);
float t0 = -b2 - s;
float t1 = -b2 + s;
auto tryCapHit = [&](float t)
{
if (t < 0.0f || t >= tHit)
{
return;
}
tHit = t;
hit = true;
};
if (t0 >= 0.0f) tryCapHit(t0);
if (t1 >= 0.0f) tryCapHit(t1);
};
intersectCap(+halfSegment);
intersectCap(-halfSegment);
if (!hit)
{
return false;
}
glm::vec3 localHit = ro + rd * tHit;
glm::vec3 worldHit = glm::vec3(worldTransform * glm::vec4(localHit + bounds.origin, 1.0f));
if (glm::dot(worldHit - rayOrigin, rayDir) <= 0.0f)
{
return false;
}
outWorldHit = worldHit;
return true;
}
// Ray / oriented-bounds intersection in world space using object-local shape.
// For non-mesh shapes we use a quick world-space bounding-sphere pretest;
// for mesh bounds we go directly to the mesh BVH (which already has a root AABB).
// Returns true when hit; outWorldHit is the closest hit point in world space.
bool intersect_ray_bounds(const glm::vec3 &rayOrigin,
const glm::vec3 &rayDir,
const RenderObject &obj,
glm::vec3 &outWorldHit,
BoundsHitDebug *debug,
MeshBVHPickHit *outMeshHit)
{
const Bounds &bounds = obj.bounds;
const glm::mat4 &worldTransform = obj.transform;
if (outMeshHit)
{
*outMeshHit = {};
}
// Non-pickable object.
if (bounds.type == BoundsType::None)
{
return false;
}
if (glm::length2(rayDir) < 1e-8f)
{
return false;
}
switch (bounds.type)
{
case BoundsType::Sphere:
{
// Early reject using bounding sphere in world space.
float sphereT = 0.0f;
if (!intersect_ray_sphere(rayOrigin, rayDir, bounds, worldTransform, sphereT))
{
return false;
}
// We already have the hit distance along the ray from the sphere test.
outWorldHit = rayOrigin + rayDir * sphereT;
return true;
}
case BoundsType::Capsule:
{
float sphereT = 0.0f;
if (!intersect_ray_sphere(rayOrigin, rayDir, bounds, worldTransform, sphereT))
{
return false;
}
return intersect_ray_capsule(rayOrigin, rayDir, bounds, worldTransform, outWorldHit);
}
case BoundsType::Mesh:
{
// For mesh bounds we rely solely on the CPU mesh BVH.
// If there is no BVH or the BVH misses, the object is
// treated as not hit by this ray (no coarse box fallback).
if (!obj.sourceMesh || !obj.sourceMesh->bvh)
{
return false;
}
if (debug)
{
debug->usedBVH = true;
}
MeshBVHPickHit meshHit{};
if (!intersect_ray_mesh_bvh(*obj.sourceMesh->bvh, worldTransform, rayOrigin, rayDir, meshHit))
{
if (debug)
{
// BVH was queried but produced no hit.
debug->fallbackBox = true;
}
return false;
}
if (debug)
{
debug->bvhHit = true;
}
outWorldHit = meshHit.worldPos;
if (outMeshHit)
{
*outMeshHit = meshHit;
}
return true;
}
case BoundsType::Box:
default:
{
float sphereT = 0.0f;
if (!intersect_ray_sphere(rayOrigin, rayDir, bounds, worldTransform, sphereT))
{
return false;
}
return intersect_ray_box(rayOrigin, rayDir, bounds, worldTransform, outWorldHit);
}
}
}
// Test whether the clip-space box corners of an object intersect a 2D NDC rectangle.
// ndcMin/ndcMax are in [-1,1]x[-1,1]. Returns true if any visible corner projects inside.
bool box_overlaps_ndc_rect(const RenderObject &obj,
const glm::mat4 &viewproj,
const glm::vec2 &ndcMin,
const glm::vec2 &ndcMax)
{
const glm::vec3 o = obj.bounds.origin;
const glm::vec3 e = obj.bounds.extents;
const glm::mat4 m = viewproj * obj.transform; // world -> clip
const std::array<glm::vec3, 8> corners{
glm::vec3{+1, +1, +1}, glm::vec3{+1, +1, -1}, glm::vec3{+1, -1, +1}, glm::vec3{+1, -1, -1},
glm::vec3{-1, +1, +1}, glm::vec3{-1, +1, -1}, glm::vec3{-1, -1, +1}, glm::vec3{-1, -1, -1},
};
for (const glm::vec3 &c : corners)
{
glm::vec3 pLocal = o + c * e;
glm::vec4 clip = m * glm::vec4(pLocal, 1.f);
if (clip.w <= 0.0f)
{
continue;
}
float x = clip.x / clip.w;
float y = clip.y / clip.w;
float z = clip.z / clip.w; // Vulkan Z0: 0..1
if (z < 0.0f || z > 1.0f)
{
continue;
}
if (x >= ndcMin.x && x <= ndcMax.x &&
y >= ndcMin.y && y <= ndcMax.y)
{
return true;
}
}
return false;
}
} // namespace
bool SceneManager::pick(const glm::vec2 &mousePosPixels, RenderObject &outObject, glm::vec3 &outWorldPos)
{
if (_context == nullptr)
{
return false;
}
SwapchainManager *swapchain = _context->getSwapchain();
if (swapchain == nullptr)
{
return false;
}
VkExtent2D extent = swapchain->windowExtent();
if (extent.width == 0 || extent.height == 0)
{
return false;
}
float width = static_cast<float>(extent.width);
float height = static_cast<float>(extent.height);
// Convert from window coordinates (top-left origin) to NDC in [-1, 1].
float ndcX = (2.0f * mousePosPixels.x / width) - 1.0f;
float ndcY = 1.0f - (2.0f * mousePosPixels.y / height);
float fovRad = glm::radians(mainCamera.fovDegrees);
float tanHalfFov = std::tan(fovRad * 0.5f);
float aspect = width / height;
// Build ray in camera space using -Z forward convention.
glm::vec3 dirCamera(ndcX * aspect * tanHalfFov,
ndcY * tanHalfFov,
-1.0f);
dirCamera = glm::normalize(dirCamera);
glm::vec3 rayOrigin = mainCamera.position;
glm::mat4 camRotation = mainCamera.getRotationMatrix();
glm::vec3 rayDir = glm::normalize(glm::vec3(camRotation * glm::vec4(dirCamera, 0.0f)));
bool anyHit = false;
float bestDist2 = std::numeric_limits<float>::max();
glm::vec3 bestHitPos{};
// Reset debug info for this pick.
pickingDebug = {};
auto testList = [&](const std::vector<RenderObject> &list)
{
for (const RenderObject &obj: list)
{
glm::vec3 hitPos{};
BoundsHitDebug localDebug{};
MeshBVHPickHit localMeshHit{};
if (!intersect_ray_bounds(rayOrigin, rayDir, obj, hitPos, &localDebug, &localMeshHit))
{
continue;
}
float d2 = glm::length2(hitPos - rayOrigin);
if (d2 < bestDist2)
{
bestDist2 = d2;
bestHitPos = hitPos;
outObject = obj;
// If we have a precise mesh BVH hit, refine the picked
// primitive to the exact triangle instead of the whole surface.
if (localMeshHit.hit && outObject.sourceMesh && outObject.sourceMesh->bvh)
{
outObject.firstIndex = localMeshHit.firstIndex;
outObject.indexCount = 3;
outObject.surfaceIndex = localMeshHit.surfaceIndex;
}
anyHit = true;
// Capture debug info for the best hit so far.
pickingDebug.usedMeshBVH = localDebug.usedBVH;
pickingDebug.meshBVHHit = localDebug.bvhHit;
pickingDebug.meshBVHFallbackBox = localDebug.fallbackBox;
if (obj.sourceMesh && obj.sourceMesh->bvh)
{
pickingDebug.meshBVHPrimCount =
static_cast<uint32_t>(obj.sourceMesh->bvh->primitives.size());
pickingDebug.meshBVHNodeCount =
static_cast<uint32_t>(obj.sourceMesh->bvh->nodes.size());
}
else
{
pickingDebug.meshBVHPrimCount = 0;
pickingDebug.meshBVHNodeCount = 0;
}
}
}
};
testList(mainDrawContext.OpaqueSurfaces);
testList(mainDrawContext.TransparentSurfaces);
if (anyHit)
{
outWorldPos = bestHitPos;
}
return anyHit;
}
bool SceneManager::resolveObjectID(uint32_t id, RenderObject &outObject) const
{
if (id == 0)
{
return false;
}
auto findIn = [&](const std::vector<RenderObject> &list) -> bool
{
for (const RenderObject &obj : list)
{
if (obj.objectID == id)
{
outObject = obj;
return true;
}
}
return false;
};
if (findIn(mainDrawContext.OpaqueSurfaces))
{
return true;
}
if (findIn(mainDrawContext.TransparentSurfaces))
{
return true;
}
return false;
}
void SceneManager::selectRect(const glm::vec2 &p0, const glm::vec2 &p1, std::vector<RenderObject> &outObjects) const
{
if (!_context || !_context->getSwapchain())
{
return;
}
VkExtent2D extent = _context->getSwapchain()->windowExtent();
if (extent.width == 0 || extent.height == 0)
{
return;
}
float width = static_cast<float>(extent.width);
float height = static_cast<float>(extent.height);
// Convert from window coordinates (top-left origin) to NDC in [-1, 1].
auto toNdc = [&](const glm::vec2 &p) -> glm::vec2
{
float ndcX = (2.0f * p.x / width) - 1.0f;
float ndcY = 1.0f - (2.0f * p.y / height);
return glm::vec2{ndcX, ndcY};
};
glm::vec2 ndc0 = toNdc(p0);
glm::vec2 ndc1 = toNdc(p1);
glm::vec2 ndcMin = glm::min(ndc0, ndc1);
glm::vec2 ndcMax = glm::max(ndc0, ndc1);
const glm::mat4 vp = sceneData.viewproj;
auto testList = [&](const std::vector<RenderObject> &list)
{
for (const RenderObject &obj : list)
{
if (box_overlaps_ndc_rect(obj, vp, ndcMin, ndcMax))
{
outObjects.push_back(obj);
}
}
};
testList(mainDrawContext.OpaqueSurfaces);
testList(mainDrawContext.TransparentSurfaces);
}