#include "vk_scene.h" #include #include "vk_swapchain.h" #include "core/engine_context.h" #include "glm/gtx/transform.hpp" #include #include "glm/gtx/norm.inl" void SceneManager::init(EngineContext *context) { _context = context; mainCamera.velocity = glm::vec3(0.f); mainCamera.position = glm::vec3(30.f, -00.f, 85.f); mainCamera.pitch = 0; mainCamera.yaw = 0; sceneData.ambientColor = glm::vec4(0.1f, 0.1f, 0.1f, 1.0f); sceneData.sunlightDirection = glm::vec4(-1.0f, -1.0f, -1.0f, 1.0f); sceneData.sunlightColor = glm::vec4(1.0f, 1.0f, 1.0f, 3.0f); } void SceneManager::update_scene() { auto start = std::chrono::system_clock::now(); mainDrawContext.OpaqueSurfaces.clear(); mainDrawContext.TransparentSurfaces.clear(); mainCamera.update(); if (loadedScenes.find("structure") != loadedScenes.end()) { loadedScenes["structure"]->Draw(glm::mat4{1.f}, mainDrawContext); } // dynamic GLTF instances for (const auto &kv: dynamicGLTFInstances) { const GLTFInstance &inst = kv.second; if (inst.scene) { inst.scene->Draw(inst.transform, mainDrawContext); } } // Default primitives are added as dynamic instances by the engine. // dynamic mesh instances for (const auto &kv: dynamicMeshInstances) { const MeshInstance &inst = kv.second; if (!inst.mesh || inst.mesh->surfaces.empty()) continue; for (const auto &surf: inst.mesh->surfaces) { RenderObject obj{}; obj.indexCount = surf.count; obj.firstIndex = surf.startIndex; obj.indexBuffer = inst.mesh->meshBuffers.indexBuffer.buffer; obj.vertexBuffer = inst.mesh->meshBuffers.vertexBuffer.buffer; obj.vertexBufferAddress = inst.mesh->meshBuffers.vertexBufferAddress; obj.material = &surf.material->data; obj.bounds = surf.bounds; obj.transform = inst.transform; if (obj.material->passType == MaterialPass::Transparent) { mainDrawContext.TransparentSurfaces.push_back(obj); } else { mainDrawContext.OpaqueSurfaces.push_back(obj); } } } glm::mat4 view = mainCamera.getViewMatrix(); // Use reversed infinite-Z projection (right-handed, -Z forward) to avoid far-plane clipping // on very large scenes. Vulkan clip space is 0..1 (GLM_FORCE_DEPTH_ZERO_TO_ONE) and requires Y flip. auto makeReversedInfinitePerspective = [](float fovyRadians, float aspect, float zNear) { // Column-major matrix; indices are [column][row] float f = 1.0f / tanf(fovyRadians * 0.5f); glm::mat4 m(0.0f); m[0][0] = f / aspect; m[1][1] = f; m[2][2] = 0.0f; m[2][3] = -1.0f; // w = -z_eye (right-handed) m[3][2] = zNear; // maps near -> 1, far -> 0 (reversed-Z) return m; }; const float fov = glm::radians(70.f); const float aspect = (float) _context->getSwapchain()->windowExtent().width / (float) _context->getSwapchain()->windowExtent().height; const float nearPlane = 0.1f; glm::mat4 projection = makeReversedInfinitePerspective(fov, aspect, nearPlane); // Vulkan NDC has inverted Y. projection[1][1] *= -1.0f; sceneData.view = view; sceneData.proj = projection; sceneData.viewproj = projection * view; // Build a simple directional light view-projection (reversed-Z orthographic) // Centered around the camera for now (non-cascaded, non-stabilized) { const glm::vec3 camPos = glm::vec3(glm::inverse(view)[3]); glm::vec3 L = glm::normalize(-glm::vec3(sceneData.sunlightDirection)); if (glm::length(L) < 1e-5f) L = glm::vec3(0.0f, -1.0f, 0.0f); const glm::vec3 worldUp(0.0f, 1.0f, 0.0f); glm::vec3 right = glm::normalize(glm::cross(worldUp, L)); glm::vec3 up = glm::normalize(glm::cross(L, right)); if (glm::length2(right) < 1e-6f) { right = glm::vec3(1, 0, 0); up = glm::normalize(glm::cross(L, right)); } const float orthoRange = 40.0f; // XY half-extent const float nearDist = 0.1f; const float farDist = 200.0f; const glm::vec3 lightPos = camPos - L * 100.0f; glm::mat4 viewLight = glm::lookAtRH(lightPos, camPos, up); // Standard RH ZO ortho with near(end - start); stats.scene_update_time = elapsed.count() / 1000.f; } void SceneManager::loadScene(const std::string &name, std::shared_ptr scene) { loadedScenes[name] = std::move(scene); } std::shared_ptr SceneManager::getScene(const std::string &name) { auto it = loadedScenes.find(name); return (it != loadedScenes.end()) ? it->second : nullptr; } void SceneManager::cleanup() { loadedScenes.clear(); loadedNodes.clear(); } void SceneManager::addMeshInstance(const std::string &name, std::shared_ptr mesh, const glm::mat4 &transform) { if (!mesh) return; dynamicMeshInstances[name] = MeshInstance{std::move(mesh), transform}; } bool SceneManager::removeMeshInstance(const std::string &name) { return dynamicMeshInstances.erase(name) > 0; } void SceneManager::clearMeshInstances() { dynamicMeshInstances.clear(); } void SceneManager::addGLTFInstance(const std::string &name, std::shared_ptr scene, const glm::mat4 &transform) { if (!scene) return; dynamicGLTFInstances[name] = GLTFInstance{std::move(scene), transform}; } bool SceneManager::removeGLTFInstance(const std::string &name) { return dynamicGLTFInstances.erase(name) > 0; } void SceneManager::clearGLTFInstances() { dynamicGLTFInstances.clear(); }