#ifndef LIGHTING_COMMON_GLSL #define LIGHTING_COMMON_GLSL const float PI = 3.14159265359; float pow5(float x) { float x2 = x * x; return x2 * x2 * x; } vec3 fresnelSchlick(float cosTheta, vec3 F0) { float m = clamp(1.0 - cosTheta, 0.0, 1.0); return F0 + (1.0 - F0) * pow5(m); } float DistributionGGX(vec3 N, vec3 H, float roughness) { float a = roughness * roughness; float a2 = a * a; float NdotH = max(dot(N, H), 0.0); float NdotH2 = NdotH * NdotH; float num = a2; float denom = (NdotH2 * (a2 - 1.0) + 1.0); denom = PI * denom * denom; return num / max(denom, 0.001); } float GeometrySchlickGGX(float NdotV, float roughness) { float r = (roughness + 1.0); float k = (r * r) / 8.0; float denom = NdotV * (1.0 - k) + k; return NdotV / max(denom, 0.001); } float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) { float ggx2 = GeometrySchlickGGX(max(dot(N, V), 0.0), roughness); float ggx1 = GeometrySchlickGGX(max(dot(N, L), 0.0), roughness); return ggx1 * ggx2; } vec3 evaluate_brdf(vec3 N, vec3 V, vec3 L, vec3 albedo, float roughness, float metallic) { vec3 H = normalize(V + L); float NdotV = max(dot(N, V), 0.0); float NdotL = max(dot(N, L), 0.0); vec3 F0 = mix(vec3(0.04), albedo, metallic); vec3 F = fresnelSchlick(max(dot(H, V), 0.0), F0); float NDF = DistributionGGX(N, H, roughness); float G = GeometrySmith(N, V, L, roughness); vec3 numerator = NDF * G * F; float denom = 4.0 * NdotV * NdotL; vec3 specular = numerator / max(denom, 0.001); vec3 kS = F; vec3 kD = (1.0 - kS) * (1.0 - metallic); return (kD * albedo / PI + specular) * NdotL; } vec3 eval_point_light(GPUPunctualLight light, vec3 pos, vec3 N, vec3 V, vec3 albedo, float roughness, float metallic) { vec3 lightPos = light.position_radius.xyz; float radius = max(light.position_radius.w, 0.0001); vec3 toLight = lightPos - pos; float dist2 = dot(toLight, toLight); if (dist2 <= 1.0e-8) { return vec3(0.0); } float invDist = inversesqrt(dist2); float dist = dist2 * invDist; vec3 L = toLight * invDist; // Smooth falloff: inverse-square with soft clamp at radius float att = 1.0 / max(dist2, 1.0e-8); float x = clamp(dist / radius, 0.0, 1.0); float smth = (1.0 - x * x); smth *= smth; float falloff = att * smth; vec3 brdf = evaluate_brdf(N, V, L, albedo, roughness, metallic); vec3 lightColor = light.color_intensity.rgb * light.color_intensity.a; return brdf * lightColor * falloff; } vec3 eval_spot_light(GPUSpotLight light, vec3 pos, vec3 N, vec3 V, vec3 albedo, float roughness, float metallic) { vec3 lightPos = light.position_radius.xyz; float radius = max(light.position_radius.w, 0.0001); vec3 toLight = lightPos - pos; float dist2 = dot(toLight, toLight); if (dist2 <= 1.0e-8) { return vec3(0.0); } float invDist = inversesqrt(dist2); float dist = dist2 * invDist; vec3 L = toLight * invDist; // surface -> light // direction_cos_outer.xyz is expected to be unit length (normalized on the CPU). vec3 dir = light.direction_cos_outer.xyz; // light -> forward float cosOuter = light.direction_cos_outer.w; float cosInner = light.cone.x; float cosTheta = dot(-L, dir); // light -> surface vs light forward if (cosTheta <= cosOuter) { return vec3(0.0); } float denom = max(cosInner - cosOuter, 0.0001); float spot = clamp((cosTheta - cosOuter) / denom, 0.0, 1.0); spot *= spot; // Smooth falloff: inverse-square with soft clamp at radius float att = 1.0 / max(dist2, 1.0e-8); float x = clamp(dist / radius, 0.0, 1.0); float smth = (1.0 - x * x); smth *= smth; float falloff = att * smth; vec3 brdf = evaluate_brdf(N, V, L, albedo, roughness, metallic); vec3 lightColor = light.color_intensity.rgb * light.color_intensity.a; return brdf * lightColor * falloff * spot; } #endif // LIGHTING_COMMON_GLSL