#include "vk_renderpass_lighting.h" #include "frame_resources.h" #include "vk_descriptor_manager.h" #include "vk_device.h" #include "core/engine_context.h" #include "core/vk_initializers.h" #include "core/vk_resource.h" #include "render/vk_pipelines.h" #include "core/vk_pipeline_manager.h" #include "core/asset_manager.h" #include "core/vk_descriptors.h" #include "core/config.h" #include "vk_mem_alloc.h" #include "vk_sampler_manager.h" #include "vk_swapchain.h" #include "render/rg_graph.h" #include void LightingPass::init(EngineContext *context) { _context = context; // Build descriptor layout for GBuffer inputs { DescriptorLayoutBuilder builder; builder.add_binding(0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER); builder.add_binding(1, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER); builder.add_binding(2, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER); _gBufferInputDescriptorLayout = builder.build(_context->getDevice()->device(), VK_SHADER_STAGE_FRAGMENT_BIT); } // Allocate and write GBuffer descriptor set _gBufferInputDescriptorSet = _context->getDescriptors()->allocate( _context->getDevice()->device(), _gBufferInputDescriptorLayout); { DescriptorWriter writer; writer.write_image(0, _context->getSwapchain()->gBufferPosition().imageView, _context->getSamplers()->defaultLinear(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER); writer.write_image(1, _context->getSwapchain()->gBufferNormal().imageView, _context->getSamplers()->defaultLinear(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER); writer.write_image(2, _context->getSwapchain()->gBufferAlbedo().imageView, _context->getSamplers()->defaultLinear(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER); writer.update_set(_context->getDevice()->device(), _gBufferInputDescriptorSet); } // Shadow map descriptor layout (set = 2, updated per-frame). Use array of cascades { DescriptorLayoutBuilder builder; builder.add_binding(0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, kShadowCascadeCount); _shadowDescriptorLayout = builder.build(_context->getDevice()->device(), VK_SHADER_STAGE_FRAGMENT_BIT); } // Build lighting pipeline through PipelineManager VkDescriptorSetLayout layouts[] = { _context->getDescriptorLayouts()->gpuSceneDataLayout(), _gBufferInputDescriptorLayout, _shadowDescriptorLayout }; GraphicsPipelineCreateInfo info{}; info.vertexShaderPath = _context->getAssets()->shaderPath("fullscreen.vert.spv"); info.fragmentShaderPath = _context->getAssets()->shaderPath("deferred_lighting.frag.spv"); info.setLayouts.assign(std::begin(layouts), std::end(layouts)); info.configure = [this](PipelineBuilder &b) { b.set_input_topology(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST); b.set_polygon_mode(VK_POLYGON_MODE_FILL); b.set_cull_mode(VK_CULL_MODE_NONE, VK_FRONT_FACE_CLOCKWISE); b.set_multisampling_none(); b.enable_blending_alphablend(); b.disable_depthtest(); b.set_color_attachment_format(_context->getSwapchain()->drawImage().imageFormat); }; _context->pipelines->createGraphicsPipeline("deferred_lighting", info); // fetch the handles so current frame uses latest versions MaterialPipeline mp{}; _context->pipelines->getMaterialPipeline("deferred_lighting", mp); _pipeline = mp.pipeline; _pipelineLayout = mp.layout; _deletionQueue.push_function([&]() { // Pipelines are owned by PipelineManager; only destroy our local descriptor set layout vkDestroyDescriptorSetLayout(_context->getDevice()->device(), _gBufferInputDescriptorLayout, nullptr); vkDestroyDescriptorSetLayout(_context->getDevice()->device(), _shadowDescriptorLayout, nullptr); }); } void LightingPass::execute(VkCommandBuffer) { // Lighting is executed via the render graph now. } void LightingPass::register_graph(RenderGraph *graph, RGImageHandle drawHandle, RGImageHandle gbufferPosition, RGImageHandle gbufferNormal, RGImageHandle gbufferAlbedo, std::span shadowCascades) { if (!graph || !drawHandle.valid() || !gbufferPosition.valid() || !gbufferNormal.valid() || !gbufferAlbedo.valid()) { return; } graph->add_pass( "Lighting", RGPassType::Graphics, [drawHandle, gbufferPosition, gbufferNormal, gbufferAlbedo, shadowCascades](RGPassBuilder &builder, EngineContext *) { builder.read(gbufferPosition, RGImageUsage::SampledFragment); builder.read(gbufferNormal, RGImageUsage::SampledFragment); builder.read(gbufferAlbedo, RGImageUsage::SampledFragment); for (size_t i = 0; i < shadowCascades.size(); ++i) { if (shadowCascades[i].valid()) builder.read(shadowCascades[i], RGImageUsage::SampledFragment); } builder.write_color(drawHandle); }, [this, drawHandle, shadowCascades](VkCommandBuffer cmd, const RGPassResources &res, EngineContext *ctx) { draw_lighting(cmd, ctx, res, drawHandle, shadowCascades); }); } void LightingPass::draw_lighting(VkCommandBuffer cmd, EngineContext *context, const RGPassResources &resources, RGImageHandle drawHandle, std::span shadowCascades) { EngineContext *ctxLocal = context ? context : _context; if (!ctxLocal || !ctxLocal->currentFrame) return; ResourceManager *resourceManager = ctxLocal->getResources(); DeviceManager *deviceManager = ctxLocal->getDevice(); DescriptorManager *descriptorLayouts = ctxLocal->getDescriptorLayouts(); PipelineManager *pipelineManager = ctxLocal->pipelines; if (!resourceManager || !deviceManager || !descriptorLayouts || !pipelineManager) return; VkImageView drawView = resources.image_view(drawHandle); if (drawView == VK_NULL_HANDLE) return; // Re-fetch pipeline in case it was hot-reloaded pipelineManager->getGraphics("deferred_lighting", _pipeline, _pipelineLayout); // Dynamic rendering is handled by the RenderGraph using the declared draw attachment. AllocatedBuffer gpuSceneDataBuffer = resourceManager->create_buffer( sizeof(GPUSceneData), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VMA_MEMORY_USAGE_CPU_TO_GPU); ctxLocal->currentFrame->_deletionQueue.push_function([resourceManager, gpuSceneDataBuffer]() { resourceManager->destroy_buffer(gpuSceneDataBuffer); }); VmaAllocationInfo allocInfo{}; vmaGetAllocationInfo(deviceManager->allocator(), gpuSceneDataBuffer.allocation, &allocInfo); auto *sceneUniformData = static_cast(allocInfo.pMappedData); *sceneUniformData = ctxLocal->getSceneData(); vmaFlushAllocation(deviceManager->allocator(), gpuSceneDataBuffer.allocation, 0, sizeof(GPUSceneData)); VkDescriptorSet globalDescriptor = ctxLocal->currentFrame->_frameDescriptors.allocate( deviceManager->device(), descriptorLayouts->gpuSceneDataLayout()); DescriptorWriter writer; writer.write_buffer(0, gpuSceneDataBuffer.buffer, sizeof(GPUSceneData), 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER); writer.update_set(deviceManager->device(), globalDescriptor); vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _pipeline); vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _pipelineLayout, 0, 1, &globalDescriptor, 0, nullptr); vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _pipelineLayout, 1, 1, &_gBufferInputDescriptorSet, 0, nullptr); // Allocate and write shadow descriptor set for this frame (set = 2) VkDescriptorSet shadowSet = ctxLocal->currentFrame->_frameDescriptors.allocate( deviceManager->device(), _shadowDescriptorLayout); { const uint32_t cascadeCount = std::min(kShadowCascadeCount, static_cast(shadowCascades.size())); std::array infos{}; for (uint32_t i = 0; i < cascadeCount; ++i) { infos[i].sampler = ctxLocal->getSamplers()->shadowLinearClamp(); infos[i].imageView = resources.image_view(shadowCascades[i]); infos[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; } VkWriteDescriptorSet write{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET}; write.dstSet = shadowSet; write.dstBinding = 0; write.descriptorCount = cascadeCount; write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; write.pImageInfo = infos.data(); vkUpdateDescriptorSets(deviceManager->device(), 1, &write, 0, nullptr); } vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _pipelineLayout, 2, 1, &shadowSet, 0, nullptr); VkViewport viewport{}; viewport.x = 0; viewport.y = 0; viewport.width = static_cast(ctxLocal->getDrawExtent().width); viewport.height = static_cast(ctxLocal->getDrawExtent().height); viewport.minDepth = 0.f; viewport.maxDepth = 1.f; vkCmdSetViewport(cmd, 0, 1, &viewport); VkRect2D scissor{}; scissor.offset = {0, 0}; scissor.extent = {ctxLocal->getDrawExtent().width, ctxLocal->getDrawExtent().height}; vkCmdSetScissor(cmd, 0, 1, &scissor); vkCmdDraw(cmd, 3, 1, 0, 0); // RenderGraph ends rendering. } void LightingPass::cleanup() { _deletionQueue.flush(); fmt::print("LightingPass::cleanup()\n"); }