#version 450 #extension GL_GOOGLE_include_directive : require #include "input_structures.glsl" #include "ibl_common.glsl" #include "lighting_common.glsl" layout (location = 0) in vec3 inNormal; layout (location = 1) in vec3 inColor; layout (location = 2) in vec2 inUV; layout (location = 3) in vec3 inWorldPos; layout (location = 4) in vec4 inTangent; layout (location = 0) out vec4 outFragColor; vec3 getCameraWorldPosition() { // view = [ R^T -R^T*C ] // [ 0 1 ] // => C = -R * T, where T is view[3].xyz and R = transpose(mat3(view)) mat3 rotT = mat3(sceneData.view); mat3 rot = transpose(rotT); vec3 T = sceneData.view[3].xyz; return -rot * T; } void main() { // Base color with material factor and texture vec4 baseTex = texture(colorTex, inUV); // Alpha from baseColor texture and factor (glTF spec) float alpha = clamp(baseTex.a * materialData.colorFactors.a, 0.0, 1.0); // Optional alpha-cutout support for MASK materials (alphaCutoff > 0) float alphaCutoff = materialData.extra[2].x; if (alphaCutoff > 0.0 && alpha < alphaCutoff) { discard; } vec3 albedo = inColor * baseTex.rgb * materialData.colorFactors.rgb; // glTF: metallicRoughnessTexture uses G=roughness, B=metallic vec2 mrTex = texture(metalRoughTex, inUV).gb; float roughness = clamp(mrTex.x * materialData.metal_rough_factors.y, 0.04, 1.0); float metallic = clamp(mrTex.y * materialData.metal_rough_factors.x, 0.0, 1.0); // Normal mapping path for forward/transparent pipeline // Expect UNORM normal map; support BC5 (RG) by reconstructing Z from XY. vec3 Nn = normalize(inNormal); vec3 N = Nn; float normalScale = max(materialData.extra[0].x, 0.0); if (normalScale > 0.0) { vec2 enc = texture(normalMap, inUV).xy * 2.0 - 1.0; enc *= normalScale; float z2 = 1.0 - dot(enc, enc); float nz = z2 > 0.0 ? sqrt(z2) : 0.0; vec3 Nm = vec3(enc, nz); vec3 T = normalize(inTangent.xyz); vec3 B = normalize(cross(Nn, T)) * inTangent.w; N = normalize(T * Nm.x + B * Nm.y + Nn * Nm.z); } vec3 camPos = getCameraWorldPosition(); vec3 V = normalize(camPos - inWorldPos); // Directional sun term (no shadows in forward path) vec3 Lsun = normalize(-sceneData.sunlightDirection.xyz); vec3 sunBRDF = evaluate_brdf(N, V, Lsun, albedo, roughness, metallic); vec3 direct = sunBRDF * sceneData.sunlightColor.rgb * sceneData.sunlightColor.a; // Punctual point lights uint pointCount = sceneData.lightCounts.x; for (uint i = 0u; i < pointCount; ++i) { direct += eval_point_light(sceneData.punctualLights[i], inWorldPos, N, V, albedo, roughness, metallic); } // Spot lights uint spotCount = sceneData.lightCounts.y; for (uint i = 0u; i < spotCount; ++i) { direct += eval_spot_light(sceneData.spotLights[i], inWorldPos, N, V, albedo, roughness, metallic); } // IBL: specular from equirect 2D mips; diffuse from SH vec3 R = reflect(-V, N); float NdotV = max(dot(N, V), 0.0); float levels = float(textureQueryLevels(iblSpec2D)); float lod = ibl_lod_from_roughness(roughness, levels); vec2 uv = dir_to_equirect_normalized(R); vec3 prefiltered = textureLod(iblSpec2D, uv, lod).rgb; vec2 brdf = texture(iblBRDF, vec2(NdotV, roughness)).rg; vec3 F0 = mix(vec3(0.04), albedo, metallic); vec3 specIBL = prefiltered * (F0 * brdf.x + brdf.y); vec3 diffIBL = (1.0 - metallic) * albedo * sh_eval_irradiance(N); // Ambient occlusion from texture + strength (indirect only) // extra[0].y = AO strength, extra[0].z = hasAO flag (1 = use AO texture) float hasAO = materialData.extra[0].z; float aoStrength = clamp(materialData.extra[0].y, 0.0, 1.0); float ao = 1.0; if (hasAO > 0.5 && aoStrength > 0.0) { float aoTex = texture(occlusionTex, inUV).r; ao = 1.0 - aoStrength + aoStrength * aoTex; } // Emissive from texture and factor vec3 emissive = vec3(0.0); vec3 emissiveFactor = materialData.extra[1].rgb; if (any(greaterThan(emissiveFactor, vec3(0.0)))) { vec3 emissiveSample = texture(emissiveTex, inUV).rgb; emissive = emissiveSample * emissiveFactor; } vec3 indirect = diffIBL + specIBL; vec3 color = direct + indirect * ao + emissive; outFragColor = vec4(color, alpha); }