ADD: IBL added

This commit is contained in:
2025-11-13 17:46:14 +09:00
parent 24e83061b4
commit ac4e437934
21 changed files with 837 additions and 54 deletions

View File

@@ -9,13 +9,13 @@ Current structure:
- PBR (IBL is WIP), cascaded shadows, normal mapping (MikkTSpace tangents optional)
- GLTF loading and rendering, primitive creation and rendering.
- Supports texture compression(BCn, non glTF standard), LRU reload
- IBL
Work-In-Progress
- [ ] IBL
- [ ] TAA
- [ ] Multiple light
- [ ] SSR
- [ ] SSAO, bloom
- [ ] bloom
- [ ] Planet Rendering
## Build prequsites

View File

@@ -0,0 +1,31 @@
#version 450
#extension GL_GOOGLE_include_directive : require
#include "input_structures.glsl"
layout(location=0) in vec2 inUV;
layout(location=0) out vec4 outColor;
// IBL specular equirect 2D (LOD 0 for background)
layout(set=3, binding=0) uniform sampler2D iblSpec2D;
vec2 dir_to_equirect(vec3 d)
{
d = normalize(d);
float phi = atan(d.z, d.x);
float theta = acos(clamp(d.y, -1.0, 1.0));
return vec2(phi * (0.15915494309) + 0.5, theta * (0.31830988618));
}
void main()
{
// Reconstruct world-space direction from screen UV
vec2 ndc = inUV * 2.0 - 1.0; // [-1,1]
vec4 clip = vec4(ndc, 1.0, 1.0);
vec4 vpos = inverse(sceneData.proj) * clip;
vec3 viewDir = normalize(vpos.xyz / max(vpos.w, 1e-6));
vec3 worldDir = normalize((inverse(sceneData.view) * vec4(viewDir, 0.0)).xyz);
vec2 uv = dir_to_equirect(worldDir);
vec3 col = textureLod(iblSpec2D, uv, 0.0).rgb;
outColor = vec4(col, 1.0);
}

View File

@@ -10,6 +10,33 @@ layout(set=1, binding=0) uniform sampler2D posTex;
layout(set=1, binding=1) uniform sampler2D normalTex;
layout(set=1, binding=2) uniform sampler2D albedoTex;
layout(set=2, binding=0) uniform sampler2D shadowTex[4];
// IBL (set=3): specular prefiltered cube, diffuse irradiance cube, BRDF LUT
layout(set=3, binding=0) uniform sampler2D iblSpec2D;
layout(set=3, binding=1) uniform sampler2D iblBRDF;
layout(std140, set=3, binding=2) uniform IBL_SH { vec4 sh[9]; } iblSH;
vec3 sh_eval_irradiance(vec3 n)
{
float x=n.x, y=n.y, z=n.z;
const float c0=0.2820947918;
const float c1=0.4886025119;
const float c2=1.0925484306;
const float c3=0.3153915653;
const float c4=0.5462742153;
float Y[9];
Y[0]=c0; Y[1]=c1*y; Y[2]=c1*z; Y[3]=c1*x; Y[4]=c2*x*y; Y[5]=c2*y*z; Y[6]=c3*(3.0*z*z-1.0); Y[7]=c2*x*z; Y[8]=c4*(x*x-y*y);
vec3 r=vec3(0.0);
for (int i=0;i<9;++i) r += iblSH.sh[i].rgb * Y[i];
return r;
}
vec2 dir_to_equirect(vec3 d)
{
d = normalize(d);
float phi = atan(d.z, d.x);
float theta = acos(clamp(d.y, -1.0, 1.0));
return vec2(phi * (0.15915494309) + 0.5, theta * (0.31830988618));
}
// TLAS for ray query (optional, guarded by sceneData.rtOptions.x)
#ifdef GL_EXT_ray_query
layout(set=0, binding=1) uniform accelerationStructureEXT topLevelAS;
@@ -338,7 +365,17 @@ void main(){
vec3 irradiance = sceneData.sunlightColor.rgb * sceneData.sunlightColor.a * NdotL * visibility;
vec3 color = (kD * albedo / PI + specular) * irradiance;
color += albedo * sceneData.ambientColor.rgb;
// Image-Based Lighting: split-sum approximation
vec3 R = reflect(-V, N);
float levels = float(textureQueryLevels(iblSpec2D));
float lod = clamp(roughness * max(levels - 1.0, 0.0), 0.0, max(levels - 1.0, 0.0));
vec2 uv = dir_to_equirect(R);
vec3 prefiltered = textureLod(iblSpec2D, uv, lod).rgb;
vec2 brdf = texture(iblBRDF, vec2(max(dot(N, V), 0.0), roughness)).rg;
vec3 specIBL = prefiltered * (F0 * brdf.x + brdf.y);
vec3 diffIBL = (1.0 - metallic) * albedo * sh_eval_irradiance(N);
color += diffIBL + specIBL;
outColor = vec4(color, 1.0);
}

View File

@@ -10,6 +10,34 @@ layout(set=1, binding=1) uniform sampler2D normalTex;
layout(set=1, binding=2) uniform sampler2D albedoTex;
layout(set=2, binding=0) uniform sampler2D shadowTex[4];
// IBL (set=3): specular prefiltered cube, diffuse irradiance cube, BRDF LUT
layout(set=3, binding=0) uniform sampler2D iblSpec2D; // equirect 2D with prefiltered mips
layout(set=3, binding=1) uniform sampler2D iblBRDF; // RG LUT
layout(std140, set=3, binding=2) uniform IBL_SH { vec4 sh[9]; } iblSH;
vec3 sh_eval_irradiance(vec3 n)
{
float x=n.x, y=n.y, z=n.z;
const float c0=0.2820947918;
const float c1=0.4886025119;
const float c2=1.0925484306;
const float c3=0.3153915653;
const float c4=0.5462742153;
float Y[9];
Y[0]=c0; Y[1]=c1*y; Y[2]=c1*z; Y[3]=c1*x; Y[4]=c2*x*y; Y[5]=c2*y*z; Y[6]=c3*(3.0*z*z-1.0); Y[7]=c2*x*z; Y[8]=c4*(x*x-y*y);
vec3 r=vec3(0.0);
for (int i=0;i<9;++i) r += iblSH.sh[i].rgb * Y[i];
return r; // already convolved with Lambert in CPU bake
}
vec2 dir_to_equirect(vec3 d)
{
d = normalize(d);
float phi = atan(d.z, d.x);
float theta = acos(clamp(d.y, -1.0, 1.0));
return vec2(phi * (0.15915494309) + 0.5, theta * (0.31830988618));
}
// Tunables for shadow quality and blending
// Border smoothing width in light-space NDC (0..1). Larger = wider cross-fade.
const float SHADOW_BORDER_SMOOTH_NDC = 0.08;
@@ -267,7 +295,17 @@ void main(){
vec3 irradiance = sceneData.sunlightColor.rgb * sceneData.sunlightColor.a * NdotL * visibility;
vec3 color = (kD * albedo / PI + specular) * irradiance;
color += albedo * sceneData.ambientColor.rgb;
// Image-Based Lighting: split-sum approximation
vec3 R = reflect(-V, N);
float levels = float(textureQueryLevels(iblSpec2D));
float lod = clamp(roughness * max(levels - 1.0, 0.0), 0.0, max(levels - 1.0, 0.0));
vec2 uv = dir_to_equirect(R);
vec3 prefiltered = textureLod(iblSpec2D, uv, lod).rgb;
vec2 brdf = texture(iblBRDF, vec2(max(dot(N, V), 0.0), roughness)).rg;
vec3 specIBL = prefiltered * (F0 * brdf.x + brdf.y);
vec3 diffIBL = (1.0 - metallic) * albedo * sh_eval_irradiance(N);
color += diffIBL + specIBL;
outColor = vec4(color, 1.0);
}

View File

@@ -13,6 +13,28 @@ layout (location = 0) out vec4 outFragColor;
const float PI = 3.14159265359;
// IBL bindings (set=3): specular equirect 2D + BRDF LUT + SH UBO
layout(set=3, binding=0) uniform sampler2D iblSpec2D;
layout(set=3, binding=1) uniform sampler2D iblBRDF;
layout(std140, set=3, binding=2) uniform IBL_SH { vec4 sh[9]; } iblSH;
vec3 sh_eval_irradiance(vec3 n)
{
float x=n.x, y=n.y, z=n.z;
const float c0=0.2820947918; const float c1=0.4886025119; const float c2=1.0925484306; const float c3=0.3153915653; const float c4=0.5462742153;
float Y[9];
Y[0]=c0; Y[1]=c1*y; Y[2]=c1*z; Y[3]=c1*x; Y[4]=c2*x*y; Y[5]=c2*y*z; Y[6]=c3*(3.0*z*z-1.0); Y[7]=c2*x*z; Y[8]=c4*(x*x-y*y);
vec3 r=vec3(0.0); for (int i=0;i<9;++i) r += iblSH.sh[i].rgb * Y[i]; return r;
}
vec2 dir_to_equirect(vec3 d)
{
d = normalize(d);
float phi = atan(d.z, d.x);
float theta = acos(clamp(d.y, -1.0, 1.0));
return vec2(phi * (0.15915494309) + 0.5, theta * (0.31830988618));
}
vec3 fresnelSchlick(float cosTheta, vec3 F0)
{
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
@@ -92,7 +114,17 @@ void main()
vec3 irradiance = sceneData.sunlightColor.rgb * sceneData.sunlightColor.a * NdotL;
vec3 color = (kD * albedo / PI + specular) * irradiance;
color += albedo * sceneData.ambientColor.rgb;
// IBL: specular from equirect 2D mips; diffuse from SH
vec3 R = reflect(-V, N);
float levels = float(textureQueryLevels(iblSpec2D));
float lod = clamp(roughness * max(levels - 1.0, 0.0), 0.0, max(levels - 1.0, 0.0));
vec2 uv = dir_to_equirect(R);
vec3 prefiltered = textureLod(iblSpec2D, uv, lod).rgb;
vec2 brdf = texture(iblBRDF, vec2(max(dot(N, V), 0.0), roughness)).rg;
vec3 specIBL = prefiltered * (F0 * brdf.x + brdf.y);
vec3 diffIBL = (1.0 - metallic) * albedo * sh_eval_irradiance(N);
color += diffIBL + specIBL;
// Alpha from baseColor texture and factor (glTF spec)
float alpha = clamp(baseTex.a * materialData.colorFactors.a, 0.0, 1.0);

View File

@@ -471,6 +471,28 @@ std::shared_ptr<MeshAsset> AssetManager::createMesh(const std::string &name,
return mesh;
}
std::shared_ptr<GLTFMaterial> AssetManager::createMaterialFromConstants(
const std::string &name,
const GLTFMetallic_Roughness::MaterialConstants &constants,
MaterialPass pass)
{
if (!_engine) return {};
GLTFMetallic_Roughness::MaterialResources res{};
res.colorImage = _engine->_whiteImage;
res.colorSampler = _engine->_samplerManager->defaultLinear();
res.metalRoughImage = _engine->_whiteImage;
res.metalRoughSampler = _engine->_samplerManager->defaultLinear();
res.normalImage = _engine->_flatNormalImage;
res.normalSampler = _engine->_samplerManager->defaultLinear();
AllocatedBuffer buf = createMaterialBufferWithConstants(constants);
res.dataBuffer = buf.buffer;
res.dataBufferOffset = 0;
_meshMaterialBuffers[name] = buf;
return createMaterial(pass, res);
}
std::shared_ptr<MeshAsset> AssetManager::getMesh(const std::string &name) const
{
auto it = _meshCache.find(name);

View File

@@ -96,6 +96,11 @@ public:
bool removeMesh(const std::string &name);
// Convenience: create a PBR material from constants using engine default textures
std::shared_ptr<GLTFMaterial> createMaterialFromConstants(const std::string &name,
const GLTFMetallic_Roughness::MaterialConstants &constants,
MaterialPass pass = MaterialPass::MainColor);
const AssetPaths &paths() const { return _locator.paths(); }
void setPaths(const AssetPaths &p) { _locator.setPaths(p); }

View File

@@ -3,15 +3,24 @@
#include <core/vk_resource.h>
#include <core/ktx_loader.h>
#include <core/vk_sampler_manager.h>
#include <core/vk_descriptors.h>
#include <cmath>
#include <algorithm>
#include <ktx.h>
#include <SDL_stdinc.h>
#include "vk_device.h"
bool IBLManager::load(const IBLPaths &paths)
{
if (_ctx == nullptr || _ctx->getResources() == nullptr) return false;
ensureLayout();
ResourceManager *rm = _ctx->getResources();
// Specular cubemap
// Load specular environment: prefer cubemap; fallback to 2D equirect with mips
if (!paths.specularCube.empty())
{
// Try as cubemap first
ktxutil::KtxCubemap kcm{};
if (ktxutil::load_ktx2_cubemap(paths.specularCube.c_str(), kcm))
{
@@ -23,9 +32,177 @@ bool IBLManager::load(const IBLPaths &paths)
kcm.imgFlags
);
}
else
{
ktxutil::Ktx2D k2d{};
if (ktxutil::load_ktx2_2d(paths.specularCube.c_str(), k2d))
{
std::vector<ResourceManager::MipLevelCopy> lv;
lv.reserve(k2d.mipLevels);
for (uint32_t mip = 0; mip < k2d.mipLevels; ++mip)
{
const auto &r = k2d.copies[mip];
lv.push_back(ResourceManager::MipLevelCopy{
.offset = r.bufferOffset,
.length = 0,
.width = r.imageExtent.width,
.height = r.imageExtent.height,
});
}
_spec = rm->create_image_compressed(k2d.bytes.data(), k2d.bytes.size(), k2d.fmt, lv,
VK_IMAGE_USAGE_SAMPLED_BIT);
ktxTexture2 *ktex = nullptr;
if (ktxTexture2_CreateFromNamedFile(paths.specularCube.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT,
&ktex) == KTX_SUCCESS && ktex)
{
const VkFormat fmt = static_cast<VkFormat>(ktex->vkFormat);
const bool isFloat16 = fmt == VK_FORMAT_R16G16B16A16_SFLOAT;
const bool isFloat32 = fmt == VK_FORMAT_R32G32B32A32_SFLOAT;
if (!ktxTexture2_NeedsTranscoding(ktex) && (isFloat16 || isFloat32) && ktex->baseWidth == 2 * ktex->
baseHeight)
{
const uint32_t W = ktex->baseWidth;
const uint32_t H = ktex->baseHeight;
const uint8_t *dataPtr = reinterpret_cast<const uint8_t *>(
ktxTexture_GetData(ktxTexture(ktex)));
// Compute 9 SH coefficients (irradiance) from equirect HDR
struct Vec3
{
float x, y, z;
};
auto half_to_float = [](uint16_t h)-> float {
uint16_t h_exp = (h & 0x7C00u) >> 10;
uint16_t h_sig = h & 0x03FFu;
uint32_t sign = (h & 0x8000u) << 16;
uint32_t f_e, f_sig;
if (h_exp == 0)
{
if (h_sig == 0)
{
f_e = 0;
f_sig = 0;
}
else
{
// subnormals
int e = -1;
uint16_t sig = h_sig;
while ((sig & 0x0400u) == 0)
{
sig <<= 1;
--e;
}
sig &= 0x03FFu;
f_e = uint32_t(127 - 15 + e) << 23;
f_sig = uint32_t(sig) << 13;
}
}
else if (h_exp == 0x1Fu)
{
f_e = 0xFFu << 23;
f_sig = uint32_t(h_sig) << 13;
}
else
{
f_e = uint32_t(h_exp - 15 + 127) << 23;
f_sig = uint32_t(h_sig) << 13;
}
uint32_t f = sign | f_e | f_sig;
float out;
std::memcpy(&out, &f, 4);
return out;
};
auto sample_at = [&](uint32_t x, uint32_t y)-> Vec3 {
if (isFloat32)
{
const float *px = reinterpret_cast<const float *>(dataPtr) + 4ull * (y * W + x);
return {px[0], px[1], px[2]};
}
else
{
const uint16_t *px = reinterpret_cast<const uint16_t *>(dataPtr) + 4ull * (y * W + x);
return {half_to_float(px[0]), half_to_float(px[1]), half_to_float(px[2])};
}
};
constexpr int L = 2; // 2nd order (9 coeffs)
const float dtheta = float(M_PI) / float(H);
const float dphi = 2.f * float(M_PI) / float(W);
// Accumulate RGB SH coeffs
std::array<glm::vec3, 9> c{};
for (auto &v: c) v = glm::vec3(0);
auto sh_basis = [](const glm::vec3 &d)-> std::array<float, 9> {
const float x = d.x, y = d.y, z = d.z;
// Real SH, unnormalized constants
const float c0 = 0.2820947918f;
const float c1 = 0.4886025119f;
const float c2 = 1.0925484306f;
const float c3 = 0.3153915653f;
const float c4 = 0.5462742153f;
return {
c0,
c1 * y,
c1 * z,
c1 * x,
c2 * x * y,
c2 * y * z,
c3 * (3.f * z * z - 1.f),
c2 * x * z,
c4 * (x * x - y * y)
};
};
for (uint32_t y = 0; y < H; ++y)
{
float theta = (y + 0.5f) * dtheta; // [0,pi]
float sinT = std::sin(theta);
for (uint32_t x = 0; x < W; ++x)
{
float phi = (x + 0.5f) * dphi; // [0,2pi]
glm::vec3 dir = glm::vec3(std::cos(phi) * sinT, std::cos(theta), std::sin(phi) * sinT);
auto Lrgb = sample_at(x, y);
glm::vec3 Lvec(Lrgb.x, Lrgb.y, Lrgb.z);
auto Y = sh_basis(dir);
float dOmega = dphi * dtheta * sinT; // solid angle per pixel
for (int i = 0; i < 9; ++i)
{
c[i] += Lvec * (Y[i] * dOmega);
}
}
}
// Convolve with Lambert kernel via per-band scale
const float A0 = float(M_PI);
const float A1 = 2.f * float(M_PI) / 3.f;
const float A2 = float(M_PI) / 4.f;
const float Aband[3] = {A0, A1, A2};
for (int i = 0; i < 9; ++i)
{
int band = (i == 0) ? 0 : (i < 4 ? 1 : 2);
c[i] *= Aband[band];
}
// Diffuse cubemap
_shBuffer = rm->create_buffer(sizeof(glm::vec4) * 9, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VMA_MEMORY_USAGE_CPU_TO_GPU);
for (int i = 0; i < 9; ++i)
{
glm::vec4 v(c[i], 0.0f);
std::memcpy(reinterpret_cast<char *>(_shBuffer.info.pMappedData) + i * sizeof(glm::vec4),
&v, sizeof(glm::vec4));
}
vmaFlushAllocation(_ctx->getDevice()->allocator(), _shBuffer.allocation, 0,
sizeof(glm::vec4) * 9);
}
ktxTexture_Destroy(ktxTexture(ktex));
}
}
}
}
// Diffuse cubemap (optional; if missing, reuse specular)
if (!paths.diffuseCube.empty())
{
ktxutil::KtxCubemap kcm{};
@@ -40,14 +217,17 @@ bool IBLManager::load(const IBLPaths &paths)
);
}
}
if (_diff.image == VK_NULL_HANDLE && _spec.image != VK_NULL_HANDLE)
{
_diff = _spec;
}
// BRDF LUT (optional)
// BRDF LUT
if (!paths.brdfLut2D.empty())
{
ktxutil::Ktx2D lut{};
if (ktxutil::load_ktx2_2d(paths.brdfLut2D.c_str(), lut))
{
// Build regions into ResourceManager::MipLevelCopy to reuse compressed 2D helper
std::vector<ResourceManager::MipLevelCopy> lv;
lv.reserve(lut.mipLevels);
for (uint32_t mip = 0; mip < lut.mipLevels; ++mip)
@@ -55,7 +235,7 @@ bool IBLManager::load(const IBLPaths &paths)
const auto &r = lut.copies[mip];
lv.push_back(ResourceManager::MipLevelCopy{
.offset = r.bufferOffset,
.length = 0, // not needed for copy scheduling
.length = 0,
.width = r.imageExtent.width,
.height = r.imageExtent.height,
});
@@ -72,8 +252,44 @@ void IBLManager::unload()
{
if (_ctx == nullptr || _ctx->getResources() == nullptr) return;
auto *rm = _ctx->getResources();
if (_spec.image) { rm->destroy_image(_spec); _spec = {}; }
if (_diff.image) { rm->destroy_image(_diff); _diff = {}; }
if (_brdf.image) { rm->destroy_image(_brdf); _brdf = {}; }
if (_spec.image)
{
rm->destroy_image(_spec);
_spec = {};
}
if (_diff.image && _diff.image != _spec.image) { rm->destroy_image(_diff); }
_diff = {};
if (_brdf.image)
{
rm->destroy_image(_brdf);
_brdf = {};
}
if (_iblSetLayout && _ctx && _ctx->getDevice())
{
vkDestroyDescriptorSetLayout(_ctx->getDevice()->device(), _iblSetLayout, nullptr);
_iblSetLayout = VK_NULL_HANDLE;
}
if (_shBuffer.buffer)
{
rm->destroy_buffer(_shBuffer);
_shBuffer = {};
}
}
bool IBLManager::ensureLayout()
{
if (_iblSetLayout != VK_NULL_HANDLE) return true;
if (!_ctx || !_ctx->getDevice()) return false;
DescriptorLayoutBuilder builder;
// binding 0: environment/specular as 2D equirect with mips
builder.add_binding(0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
// binding 1: BRDF LUT 2D
builder.add_binding(1, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
// binding 2: SH coefficients UBO (vec4[9])
builder.add_binding(2, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
_iblSetLayout = builder.build(
_ctx->getDevice()->device(), VK_SHADER_STAGE_FRAGMENT_BIT,
nullptr, VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT);
return _iblSetLayout != VK_NULL_HANDLE;
}

View File

@@ -12,7 +12,6 @@ struct IBLPaths
std::string brdfLut2D; // .ktx2 (BC5 RG UNORM or similar)
};
// Minimal IBL asset owner with optional residency control.
class IBLManager
{
public:
@@ -29,11 +28,20 @@ public:
AllocatedImage specular() const { return _spec; }
AllocatedImage diffuse() const { return _diff; }
AllocatedImage brdf() const { return _brdf; }
AllocatedBuffer shBuffer() const { return _shBuffer; }
bool hasSH() const { return _shBuffer.buffer != VK_NULL_HANDLE; }
// Descriptor set layout used by shaders (set=3)
VkDescriptorSetLayout descriptorLayout() const { return _iblSetLayout; }
// Build descriptor set layout without loading images (for early pipeline creation)
bool ensureLayout();
private:
EngineContext *_ctx{nullptr};
AllocatedImage _spec{};
AllocatedImage _diff{};
AllocatedImage _brdf{};
VkDescriptorSetLayout _iblSetLayout = VK_NULL_HANDLE;
AllocatedBuffer _shBuffer{}; // 9*vec4 coefficients (RGB in .xyz)
};

View File

@@ -24,6 +24,7 @@ void DescriptorManager::init(DeviceManager *deviceManager)
_deviceManager->device(), VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT,
nullptr, VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT);
}
}
void DescriptorManager::cleanup()

View File

@@ -51,6 +51,7 @@
#include "core/vk_pipeline_manager.h"
#include "core/config.h"
#include "core/texture_cache.h"
#include "core/ibl_manager.h"
// Query a conservative streaming texture budget based on VMA-reported
// device-local heap budgets. Uses ~35% of total device-local budget.
@@ -116,6 +117,85 @@ namespace {
ImGui::SliderFloat("Render Scale", &eng->renderScale, 0.3f, 1.f);
}
// IBL test grid spawner (spheres varying metallic/roughness)
static void spawn_ibl_test(VulkanEngine *eng)
{
if (!eng || !eng->_assetManager || !eng->_sceneManager) return;
using MC = GLTFMetallic_Roughness::MaterialConstants;
std::vector<Vertex> verts; std::vector<uint32_t> inds;
primitives::buildSphere(verts, inds, 24, 24);
const float mVals[5] = {0.0f, 0.25f, 0.5f, 0.75f, 1.0f};
const float rVals[5] = {0.04f, 0.25f, 0.5f, 0.75f, 1.0f};
const float spacing = 1.6f;
const glm::vec3 origin(-spacing*2.0f, 0.0f, -spacing*2.0f);
for (int iy=0; iy<5; ++iy)
{
for (int ix=0; ix<5; ++ix)
{
MC c{};
c.colorFactors = glm::vec4(0.82f, 0.82f, 0.82f, 1.0f);
c.metal_rough_factors = glm::vec4(mVals[ix], rVals[iy], 0.0f, 0.0f);
const std::string base = fmt::format("ibltest.m{}_r{}", ix, iy);
auto mat = eng->_assetManager->createMaterialFromConstants(base+".mat", c, MaterialPass::MainColor);
auto mesh = eng->_assetManager->createMesh(base+".mesh", std::span<Vertex>(verts.data(), verts.size()),
std::span<uint32_t>(inds.data(), inds.size()), mat);
const glm::vec3 pos = origin + glm::vec3(ix*spacing, 0.5f, iy*spacing);
glm::mat4 M = glm::translate(glm::mat4(1.0f), pos);
eng->_sceneManager->addMeshInstance(base+".inst", mesh, M);
eng->_iblTestNames.push_back(base+".inst");
eng->_iblTestNames.push_back(base+".mesh");
eng->_iblTestNames.push_back(base+".mat");
}
}
// Chrome and glass extras
{
MC chrome{}; chrome.colorFactors = glm::vec4(0.9f,0.9f,0.9f,1.0f); chrome.metal_rough_factors = glm::vec4(1.0f, 0.06f,0,0);
auto mat = eng->_assetManager->createMaterialFromConstants("ibltest.chrome.mat", chrome, MaterialPass::MainColor);
auto mesh = eng->_assetManager->createMesh("ibltest.chrome.mesh", std::span<Vertex>(verts.data(), verts.size()),
std::span<uint32_t>(inds.data(), inds.size()), mat);
glm::mat4 M = glm::translate(glm::mat4(1.0f), origin + glm::vec3(5.5f, 0.5f, 0.0f));
eng->_sceneManager->addMeshInstance("ibltest.chrome.inst", mesh, M);
eng->_iblTestNames.insert(eng->_iblTestNames.end(), {"ibltest.chrome.inst","ibltest.chrome.mesh","ibltest.chrome.mat"});
}
{
MC glass{}; glass.colorFactors = glm::vec4(0.9f,0.95f,1.0f,0.25f); glass.metal_rough_factors = glm::vec4(0.0f, 0.02f,0,0);
auto mat = eng->_assetManager->createMaterialFromConstants("ibltest.glass.mat", glass, MaterialPass::Transparent);
auto mesh = eng->_assetManager->createMesh("ibltest.glass.mesh", std::span<Vertex>(verts.data(), verts.size()),
std::span<uint32_t>(inds.data(), inds.size()), mat);
glm::mat4 M = glm::translate(glm::mat4(1.0f), origin + glm::vec3(5.5f, 0.5f, 2.0f));
eng->_sceneManager->addMeshInstance("ibltest.glass.inst", mesh, M);
eng->_iblTestNames.insert(eng->_iblTestNames.end(), {"ibltest.glass.inst","ibltest.glass.mesh","ibltest.glass.mat"});
}
}
static void clear_ibl_test(VulkanEngine *eng)
{
if (!eng || !eng->_sceneManager || !eng->_assetManager) return;
for (size_t i=0;i<eng->_iblTestNames.size(); ++i)
{
const std::string &n = eng->_iblTestNames[i];
// Remove instances and meshes by prefix
if (n.ends_with(".inst")) eng->_sceneManager->removeMeshInstance(n);
else if (n.ends_with(".mesh")) eng->_assetManager->removeMesh(n);
}
eng->_iblTestNames.clear();
}
static void ui_ibl(VulkanEngine *eng)
{
if (!eng) return;
if (ImGui::Button("Spawn IBL Test Grid")) { spawn_ibl_test(eng); }
ImGui::SameLine();
if (ImGui::Button("Clear IBL Test")) { clear_ibl_test(eng); }
ImGui::TextUnformatted("5x5 spheres: metallic across columns, roughness across rows.\nExtra: chrome + glass.");
}
// Quick stats & targets overview
static void ui_overview(VulkanEngine *eng)
{
@@ -600,6 +680,21 @@ void VulkanEngine::init()
_renderGraph->init(_context.get());
_context->renderGraph = _renderGraph.get();
// Create IBL manager early so set=3 layout exists before pipelines are built
_iblManager = std::make_unique<IBLManager>();
_iblManager->init(_context.get());
// Publish to context for passes and pipeline layout assembly
_context->ibl = _iblManager.get();
// Try to load default IBL assets if present
{
IBLPaths ibl{};
// ibl.specularCube = _assetManager->assetPath("ibl/docklands.ktx2");
// ibl.diffuseCube = _assetManager->assetPath("ibl/docklands.ktx2"); // temporary: reuse if separate diffuse not provided
ibl.brdfLut2D = _assetManager->assetPath("ibl/brdf_lut.ktx2");
_iblManager->load(ibl);
}
init_frame_resources();
// Build material pipelines early so materials can be created
@@ -1062,6 +1157,11 @@ void VulkanEngine::run()
ui_pipelines(this);
ImGui::EndTabItem();
}
if (ImGui::BeginTabItem("IBL"))
{
ui_ibl(this);
ImGui::EndTabItem();
}
if (ImGui::BeginTabItem("PostFX"))
{
ui_postfx(this);

View File

@@ -32,6 +32,7 @@
#include "render/rg_graph.h"
#include "core/vk_raytracing.h"
#include "core/texture_cache.h"
#include "core/ibl_manager.h"
// Number of frames-in-flight. Affects per-frame command buffers, fences,
// semaphores, and transient descriptor pools in FrameResources.
@@ -69,6 +70,7 @@ public:
std::unique_ptr<RenderGraph> _renderGraph;
std::unique_ptr<RayTracingManager> _rayManager;
std::unique_ptr<TextureCache> _textureCache;
std::unique_ptr<IBLManager> _iblManager;
struct SDL_Window *_window{nullptr};
@@ -109,6 +111,9 @@ public:
std::vector<RenderPass> renderPasses;
// Debug helpers: track spawned IBL test meshes to remove them easily
std::vector<std::string> _iblTestNames;
// Debug: persistent pass enable overrides (by pass name)
std::unordered_map<std::string, bool> _rgPassToggles;

View File

@@ -25,9 +25,21 @@ void GLTFMetallic_Roughness::build_pipelines(VulkanEngine *engine)
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT,
nullptr, VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT);
// Ensure IBL layout exists; add placeholder for set=2
// Create a persistent empty set layout placeholder (lifetime = GLTFMetallic_Roughness)
{
VkDescriptorSetLayoutCreateInfo info{ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO };
VK_CHECK(vkCreateDescriptorSetLayout(engine->_deviceManager->device(), &info, nullptr, &emptySetLayout));
}
VkDescriptorSetLayout iblLayout = emptySetLayout;
if (engine->_context->ibl && engine->_context->ibl->ensureLayout())
iblLayout = engine->_context->ibl->descriptorLayout();
VkDescriptorSetLayout layouts[] = {
engine->_descriptorManager->gpuSceneDataLayout(),
materialLayout
engine->_descriptorManager->gpuSceneDataLayout(), // set=0
materialLayout, // set=1
emptySetLayout, // set=2 (unused)
iblLayout // set=3
};
// Register pipelines with the central PipelineManager
@@ -87,6 +99,8 @@ void GLTFMetallic_Roughness::build_pipelines(VulkanEngine *engine)
};
engine->_pipelineManager->registerGraphics("mesh.gbuffer", gbufferInfo);
// Keep emptySetLayout until clear_resources()
engine->_pipelineManager->getMaterialPipeline("mesh.opaque", opaquePipeline);
engine->_pipelineManager->getMaterialPipeline("mesh.transparent", transparentPipeline);
engine->_pipelineManager->getMaterialPipeline("mesh.gbuffer", gBufferPipeline);
@@ -95,6 +109,7 @@ void GLTFMetallic_Roughness::build_pipelines(VulkanEngine *engine)
void GLTFMetallic_Roughness::clear_resources(VkDevice device) const
{
vkDestroyDescriptorSetLayout(device, materialLayout, nullptr);
if (emptySetLayout) vkDestroyDescriptorSetLayout(device, emptySetLayout, nullptr);
}
MaterialInstance GLTFMetallic_Roughness::write_material(VkDevice device, MaterialPass pass,

View File

@@ -12,6 +12,7 @@ struct GLTFMetallic_Roughness
MaterialPipeline gBufferPipeline;
VkDescriptorSetLayout materialLayout;
VkDescriptorSetLayout emptySetLayout = VK_NULL_HANDLE; // placeholder for set=2
struct MaterialConstants
{

View File

@@ -7,6 +7,13 @@
#include "core/vk_pipeline_manager.h"
#include "core/asset_manager.h"
#include "render/rg_graph.h"
#include <cstring>
#include "frame_resources.h"
#include "ibl_manager.h"
#include "vk_descriptor_manager.h"
#include "vk_device.h"
#include "vk_sampler_manager.h"
void BackgroundPass::init(EngineContext *context)
{
@@ -43,6 +50,63 @@ void BackgroundPass::init_background_pipelines()
_backgroundEffects.push_back(gradient);
_backgroundEffects.push_back(sky);
// Graphics env (cubemap) background mode
ComputeEffect env{}; env.name = "env";
_backgroundEffects.push_back(env);
// Prepare graphics pipeline for environment background (cubemap)
// Create an empty descriptor set layout to occupy sets 1 and 2 (shader uses set=0 and set=3)
{
VkDescriptorSetLayoutCreateInfo info{ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO };
info.bindingCount = 0;
info.pBindings = nullptr;
vkCreateDescriptorSetLayout(_context->getDevice()->device(), &info, nullptr, &_emptySetLayout);
}
GraphicsPipelineCreateInfo gp{};
gp.vertexShaderPath = _context->getAssets()->shaderPath("fullscreen.vert.spv");
gp.fragmentShaderPath = _context->getAssets()->shaderPath("background_env.frag.spv");
VkDescriptorSetLayout sl0 = _context->getDescriptorLayouts()->gpuSceneDataLayout();
VkDescriptorSetLayout sl1 = _emptySetLayout; // placeholder for set=1
VkDescriptorSetLayout sl2 = _emptySetLayout; // placeholder for set=2
// Ensure IBL layout exists (now owned by IBLManager)
VkDescriptorSetLayout sl3 = _emptySetLayout;
if (_context->ibl && _context->ibl->ensureLayout())
sl3 = _context->ibl->descriptorLayout();
gp.setLayouts = { sl0, sl1, sl2, sl3 };
gp.configure = [this](PipelineBuilder &b) {
b.set_input_topology(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST);
b.set_polygon_mode(VK_POLYGON_MODE_FILL);
b.set_cull_mode(VK_CULL_MODE_NONE, VK_FRONT_FACE_CLOCKWISE);
b.set_multisampling_none();
b.disable_depthtest();
b.disable_blending();
b.set_color_attachment_format(_context->getSwapchain()->drawImage().imageFormat);
};
_context->pipelines->createGraphicsPipeline("background.env", gp);
// Create fallback 1x1x6 black cube
{
const uint32_t faceCount = 6;
const uint32_t pixel = 0x00000000u; // RGBA8 black
std::vector<uint8_t> bytes(faceCount * 4);
for (uint32_t f = 0; f < faceCount; ++f) std::memcpy(bytes.data() + f * 4, &pixel, 4);
std::vector<VkBufferImageCopy> copies;
copies.reserve(faceCount);
for (uint32_t f = 0; f < faceCount; ++f) {
VkBufferImageCopy r{};
r.bufferOffset = f * 4;
r.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
r.imageSubresource.mipLevel = 0;
r.imageSubresource.baseArrayLayer = f;
r.imageSubresource.layerCount = 1;
r.imageExtent = {1,1,1};
copies.push_back(r);
}
_fallbackIblCube = _context->getResources()->create_image_compressed_layers(
bytes.data(), bytes.size(), VK_FORMAT_R8G8B8A8_UNORM, 1, faceCount, copies,
VK_IMAGE_USAGE_SAMPLED_BIT, VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT);
}
}
void BackgroundPass::execute(VkCommandBuffer)
@@ -56,6 +120,64 @@ void BackgroundPass::register_graph(RenderGraph *graph, RGImageHandle drawHandle
if (!graph || !drawHandle.valid() || !_context) return;
if (_backgroundEffects.empty()) return;
// Route to compute or graphics depending on selected mode
const ComputeEffect &effect = _backgroundEffects[_currentEffect];
if (std::string_view(effect.name) == std::string_view("env"))
{
graph->add_pass(
"BackgroundEnv",
RGPassType::Graphics,
[drawHandle](RGPassBuilder &builder, EngineContext *) {
builder.write_color(drawHandle);
},
[this, drawHandle](VkCommandBuffer cmd, const RGPassResources &res, EngineContext *ctx) {
VkImageView drawView = res.image_view(drawHandle);
(void) drawView; // handled by RG
// pipeline + layout
if (!ctx->pipelines->getGraphics("background.env", _envPipeline, _envPipelineLayout)) return;
// Per-frame scene UBO
AllocatedBuffer ubo = ctx->getResources()->create_buffer(sizeof(GPUSceneData),
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VMA_MEMORY_USAGE_CPU_TO_GPU);
ctx->currentFrame->_deletionQueue.push_function([rm = ctx->getResources(), ubo]() { rm->destroy_buffer(ubo); });
VmaAllocationInfo ai{}; vmaGetAllocationInfo(ctx->getDevice()->allocator(), ubo.allocation, &ai);
*reinterpret_cast<GPUSceneData*>(ai.pMappedData) = ctx->getSceneData();
vmaFlushAllocation(ctx->getDevice()->allocator(), ubo.allocation, 0, sizeof(GPUSceneData));
VkDescriptorSet global = ctx->currentFrame->_frameDescriptors.allocate(
ctx->getDevice()->device(), ctx->getDescriptorLayouts()->gpuSceneDataLayout());
DescriptorWriter w0; w0.write_buffer(0, ubo.buffer, sizeof(GPUSceneData), 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
w0.update_set(ctx->getDevice()->device(), global);
// IBL set
VkImageView specView = _fallbackIblCube.imageView;
if (ctx->ibl && ctx->ibl->specular().imageView) specView = ctx->ibl->specular().imageView;
VkDescriptorSetLayout iblLayout = (ctx->ibl ? ctx->ibl->descriptorLayout() : _emptySetLayout);
VkDescriptorSet ibl = ctx->currentFrame->_frameDescriptors.allocate(
ctx->getDevice()->device(), iblLayout);
DescriptorWriter w3;
// Bind only specular at binding 0; other bindings are unused in this shader
w3.write_image(0, specView, ctx->getSamplers()->defaultLinear(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
w3.update_set(ctx->getDevice()->device(), ibl);
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _envPipeline);
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _envPipelineLayout, 0, 1, &global, 0, nullptr);
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _envPipelineLayout, 3, 1, &ibl, 0, nullptr);
VkExtent2D extent = ctx->getDrawExtent();
VkViewport vp{0.f, 0.f, float(extent.width), float(extent.height), 0.f, 1.f};
VkRect2D sc{{0,0}, extent};
vkCmdSetViewport(cmd, 0, 1, &vp);
vkCmdSetScissor(cmd, 0, 1, &sc);
vkCmdDraw(cmd, 3, 1, 0, 0);
}
);
}
else
{
graph->add_pass(
"Background",
RGPassType::Compute,
@@ -70,20 +192,21 @@ void BackgroundPass::register_graph(RenderGraph *graph, RGImageHandle drawHandle
_context->pipelines->setComputeInstanceStorageImage("background.sky", 0, drawView);
}
ComputeEffect &effect = _backgroundEffects[_currentEffect];
ComputeEffect &eff = _backgroundEffects[_currentEffect];
ComputeDispatchInfo dispatchInfo = ComputeManager::createDispatch2D(
ctx->getDrawExtent().width, ctx->getDrawExtent().height);
dispatchInfo.pushConstants = &effect.data;
dispatchInfo.pushConstants = &eff.data;
dispatchInfo.pushConstantSize = sizeof(ComputePushConstants);
const char *instanceName = (std::string_view(effect.name) == std::string_view("gradient"))
const char *instanceName = (std::string_view(eff.name) == std::string_view("gradient"))
? "background.gradient"
: "background.sky";
ctx->pipelines->dispatchComputeInstance(cmd, instanceName, dispatchInfo);
}
);
}
}
void BackgroundPass::cleanup()
{
@@ -94,6 +217,22 @@ void BackgroundPass::cleanup()
_context->pipelines->destroyComputePipeline("gradient");
_context->pipelines->destroyComputePipeline("sky");
}
if (_envPipeline != VK_NULL_HANDLE || _envPipelineLayout != VK_NULL_HANDLE)
{
// Pipelines are owned by PipelineManager and destroyed there on cleanup/hot-reload
_envPipeline = VK_NULL_HANDLE;
_envPipelineLayout = VK_NULL_HANDLE;
}
if (_emptySetLayout)
{
vkDestroyDescriptorSetLayout(_context->getDevice()->device(), _emptySetLayout, nullptr);
_emptySetLayout = VK_NULL_HANDLE;
}
if (_fallbackIblCube.image)
{
_context->getResources()->destroy_image(_fallbackIblCube);
_fallbackIblCube = {};
}
fmt::print("BackgroundPass::cleanup()\n");
_backgroundEffects.clear();
}

View File

@@ -25,4 +25,12 @@ private:
EngineContext *_context = nullptr;
void init_background_pipelines();
// Graphics env background pipeline
VkPipeline _envPipeline = VK_NULL_HANDLE;
VkPipelineLayout _envPipelineLayout = VK_NULL_HANDLE;
// Empty descriptor layout used as placeholder for sets 1 and 2
VkDescriptorSetLayout _emptySetLayout = VK_NULL_HANDLE;
// Fallback 1x1x6 black cube if IBL not loaded
AllocatedImage _fallbackIblCube{};
};

View File

@@ -17,13 +17,22 @@
#include "vk_swapchain.h"
#include "render/rg_graph.h"
#include <array>
#include <cstring>
#include "ibl_manager.h"
#include "vk_raytracing.h"
void LightingPass::init(EngineContext *context)
{
_context = context;
// Placeholder empty set layout to keep array sizes stable if needed
{
VkDescriptorSetLayoutCreateInfo info{ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO };
info.bindingCount = 0; info.pBindings = nullptr;
vkCreateDescriptorSetLayout(_context->getDevice()->device(), &info, nullptr, &_emptySetLayout);
}
// Build descriptor layout for GBuffer inputs
{
DescriptorLayoutBuilder builder;
@@ -59,10 +68,16 @@ void LightingPass::init(EngineContext *context)
}
// Build lighting pipelines (RT and non-RT) through PipelineManager
// Ensure IBL layout exists (moved to IBLManager)
VkDescriptorSetLayout iblLayout = _emptySetLayout;
if (_context->ibl && _context->ibl->ensureLayout())
iblLayout = _context->ibl->descriptorLayout();
VkDescriptorSetLayout layouts[] = {
_context->getDescriptorLayouts()->gpuSceneDataLayout(),
_gBufferInputDescriptorLayout,
_shadowDescriptorLayout
_context->getDescriptorLayouts()->gpuSceneDataLayout(), // set=0
_gBufferInputDescriptorLayout, // set=1
_shadowDescriptorLayout, // set=2
iblLayout // set=3
};
GraphicsPipelineCreateInfo baseInfo{};
@@ -92,7 +107,23 @@ void LightingPass::init(EngineContext *context)
// Pipelines are owned by PipelineManager; only destroy our local descriptor set layout
vkDestroyDescriptorSetLayout(_context->getDevice()->device(), _gBufferInputDescriptorLayout, nullptr);
vkDestroyDescriptorSetLayout(_context->getDevice()->device(), _shadowDescriptorLayout, nullptr);
if (_emptySetLayout) vkDestroyDescriptorSetLayout(_context->getDevice()->device(), _emptySetLayout, nullptr);
});
// Create tiny fallback textures for IBL (grey 2D and RG LUT)
// so shaders can safely sample even when IBL isn't loaded.
{
const uint32_t pixel = 0xFF333333u; // RGBA8 grey
_fallbackIbl2D = _context->getResources()->create_image(&pixel, VkExtent3D{1,1,1},
VK_FORMAT_R8G8B8A8_UNORM,
VK_IMAGE_USAGE_SAMPLED_BIT);
}
{
// 1x1 RG UNORM for BRDF LUT fallback
const uint16_t rg = 0x0000u; // R=0,G=0
_fallbackBrdfLut2D = _context->getResources()->create_image(
&rg, VkExtent3D{1,1,1}, VK_FORMAT_R8G8_UNORM, VK_IMAGE_USAGE_SAMPLED_BIT);
}
}
void LightingPass::execute(VkCommandBuffer)
@@ -223,6 +254,41 @@ void LightingPass::draw_lighting(VkCommandBuffer cmd,
}
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _pipelineLayout, 2, 1, &shadowSet, 0, nullptr);
// IBL descriptor set (set = 3). Use loaded IBL if present, otherwise fall back to black.
VkImageView specView = _fallbackIbl2D.imageView;
VkImageView brdfView = _fallbackBrdfLut2D.imageView;
VkBuffer shBuf = VK_NULL_HANDLE; VkDeviceSize shSize = sizeof(glm::vec4)*9;
if (ctxLocal->ibl)
{
if (ctxLocal->ibl->specular().imageView) specView = ctxLocal->ibl->specular().imageView;
if (ctxLocal->ibl->brdf().imageView) brdfView = ctxLocal->ibl->brdf().imageView;
if (ctxLocal->ibl->hasSH()) shBuf = ctxLocal->ibl->shBuffer().buffer;
}
// If SH missing, create a zero buffer for this frame
AllocatedBuffer shZero{};
if (shBuf == VK_NULL_HANDLE)
{
shZero = resourceManager->create_buffer(shSize, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VMA_MEMORY_USAGE_CPU_TO_GPU);
std::memset(shZero.info.pMappedData, 0, shSize);
vmaFlushAllocation(deviceManager->allocator(), shZero.allocation, 0, shSize);
shBuf = shZero.buffer;
ctxLocal->currentFrame->_deletionQueue.push_function([resourceManager, shZero]() { resourceManager->destroy_buffer(shZero); });
}
// Allocate from IBL layout (must exist because pipeline was created with it)
VkDescriptorSetLayout iblSetLayout = (ctxLocal->ibl ? ctxLocal->ibl->descriptorLayout() : _emptySetLayout);
VkDescriptorSet iblSet = ctxLocal->currentFrame->_frameDescriptors.allocate(
deviceManager->device(), iblSetLayout);
{
DescriptorWriter w;
w.write_image(0, specView, ctxLocal->getSamplers()->defaultLinear(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
w.write_image(1, brdfView, ctxLocal->getSamplers()->defaultLinear(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
w.write_buffer(2, shBuf, shSize, 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
w.update_set(deviceManager->device(), iblSet);
}
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _pipelineLayout, 3, 1, &iblSet, 0, nullptr);
VkViewport viewport{};
viewport.x = 0;
viewport.y = 0;

View File

@@ -27,9 +27,13 @@ private:
VkDescriptorSetLayout _gBufferInputDescriptorLayout = VK_NULL_HANDLE;
VkDescriptorSet _gBufferInputDescriptorSet = VK_NULL_HANDLE;
VkDescriptorSetLayout _shadowDescriptorLayout = VK_NULL_HANDLE; // set=2 (array)
// Fallbacks if IBL is not loaded
AllocatedImage _fallbackIbl2D{}; // 1x1 black
AllocatedImage _fallbackBrdfLut2D{}; // 1x1 RG, black
VkPipelineLayout _pipelineLayout = VK_NULL_HANDLE;
VkPipeline _pipeline = VK_NULL_HANDLE;
VkDescriptorSetLayout _emptySetLayout = VK_NULL_HANDLE; // placeholder if IBL layout missing
void draw_lighting(VkCommandBuffer cmd,
EngineContext *context,

View File

@@ -3,7 +3,9 @@
#include <algorithm>
#include <unordered_set>
#include "ibl_manager.h"
#include "texture_cache.h"
#include "vk_sampler_manager.h"
#include "vk_scene.h"
#include "vk_swapchain.h"
#include "core/engine_context.h"
@@ -16,6 +18,12 @@
void TransparentPass::init(EngineContext *context)
{
_context = context;
// Create fallback images
const uint32_t pixel = 0x00000000u;
_fallbackIbl2D = _context->getResources()->create_image(&pixel, VkExtent3D{1,1,1},
VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_SAMPLED_BIT);
_fallbackBrdf2D = _context->getResources()->create_image(&pixel, VkExtent3D{1,1,1},
VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_SAMPLED_BIT);
}
void TransparentPass::execute(VkCommandBuffer)
@@ -94,6 +102,41 @@ void TransparentPass::draw_transparent(VkCommandBuffer cmd,
writer.write_buffer(0, gpuSceneDataBuffer.buffer, sizeof(GPUSceneData), 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
writer.update_set(deviceManager->device(), globalDescriptor);
// Build IBL descriptor set (set=3) once for this pass
VkDescriptorSet iblSet = VK_NULL_HANDLE;
VkDescriptorSetLayout iblLayout = ctxLocal->ibl ? ctxLocal->ibl->descriptorLayout() : VK_NULL_HANDLE;
VkImageView specView = VK_NULL_HANDLE, brdfView = VK_NULL_HANDLE;
VkBuffer shBuf = VK_NULL_HANDLE; VkDeviceSize shSize = sizeof(glm::vec4)*9;
if (iblLayout)
{
// Fallbacks: use black if any missing
specView = (ctxLocal->ibl && ctxLocal->ibl->specular().imageView) ? ctxLocal->ibl->specular().imageView
: _fallbackIbl2D.imageView;
brdfView = (ctxLocal->ibl && ctxLocal->ibl->brdf().imageView) ? ctxLocal->ibl->brdf().imageView
: _fallbackBrdf2D.imageView;
if (ctxLocal->ibl && ctxLocal->ibl->hasSH()) shBuf = ctxLocal->ibl->shBuffer().buffer;
// If SH missing, allocate zero UBO for this frame
AllocatedBuffer shZero{};
if (shBuf == VK_NULL_HANDLE)
{
shZero = resourceManager->create_buffer(shSize, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VMA_MEMORY_USAGE_CPU_TO_GPU);
std::memset(shZero.info.pMappedData, 0, shSize);
vmaFlushAllocation(deviceManager->allocator(), shZero.allocation, 0, shSize);
shBuf = shZero.buffer;
ctxLocal->currentFrame->_deletionQueue.push_function([resourceManager, shZero]() { resourceManager->destroy_buffer(shZero); });
}
iblSet = ctxLocal->currentFrame->_frameDescriptors.allocate(deviceManager->device(), iblLayout);
DescriptorWriter iw;
iw.write_image(0, specView, ctxLocal->getSamplers()->defaultLinear(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
iw.write_image(1, brdfView, ctxLocal->getSamplers()->defaultLinear(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
iw.write_buffer(2, shBuf, shSize, 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
iw.update_set(deviceManager->device(), iblSet);
}
// Sort transparent back-to-front using camera-space depth.
// We approximate object depth by transforming the mesh bounds origin.
// For better results consider using per-object center or per-draw depth range.
@@ -132,6 +175,11 @@ void TransparentPass::draw_transparent(VkCommandBuffer cmd,
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, r.material->pipeline->pipeline);
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, r.material->pipeline->layout, 0, 1,
&globalDescriptor, 0, nullptr);
if (iblSet)
{
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, r.material->pipeline->layout, 3, 1,
&iblSet, 0, nullptr);
}
}
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, r.material->pipeline->layout, 1, 1,
&r.material->materialSet, 0, nullptr);
@@ -163,5 +211,10 @@ void TransparentPass::draw_transparent(VkCommandBuffer cmd,
void TransparentPass::cleanup()
{
if (_context && _context->getResources())
{
if (_fallbackIbl2D.image) _context->getResources()->destroy_image(_fallbackIbl2D);
if (_fallbackBrdf2D.image) _context->getResources()->destroy_image(_fallbackBrdf2D);
}
fmt::print("TransparentPass::cleanup()\n");
}

View File

@@ -24,5 +24,7 @@ private:
RGImageHandle depthHandle) const;
EngineContext *_context{};
mutable AllocatedImage _fallbackIbl2D{}; // 1x1 black (created in init)
mutable AllocatedImage _fallbackBrdf2D{}; // 1x1 black RG
};

View File

@@ -23,7 +23,7 @@ void SceneManager::init(EngineContext *context)
mainCamera.yaw = 0;
sceneData.ambientColor = glm::vec4(0.1f, 0.1f, 0.1f, 1.0f);
sceneData.sunlightDirection = glm::vec4(-1.0f, -1.0f, -0.1f, 1.0f);
sceneData.sunlightDirection = glm::vec4(-0.2f, -1.0f, -0.3f, 1.0f);
sceneData.sunlightColor = glm::vec4(1.0f, 1.0f, 1.0f, 3.0f);
}