EDIT: folder structure refactoring

This commit is contained in:
2025-11-26 22:22:06 +09:00
parent 87e2a5d683
commit a816864c88
42 changed files with 124 additions and 121 deletions

View File

@@ -0,0 +1,238 @@
#include "background.h"
#include <string_view>
#include "vk_swapchain.h"
#include "core/engine_context.h"
#include "core/vk_resource.h"
#include "core/vk_pipeline_manager.h"
#include "core/asset_manager.h"
#include "render/graph/graph.h"
#include <cstring>
#include "frame_resources.h"
#include "ibl_manager.h"
#include "vk_descriptor_manager.h"
#include "vk_device.h"
#include "vk_sampler_manager.h"
void BackgroundPass::init(EngineContext *context)
{
_context = context;
init_background_pipelines();
}
void BackgroundPass::init_background_pipelines()
{
ComputePipelineCreateInfo createInfo{};
createInfo.shaderPath = _context->getAssets()->shaderPath("gradient_color.comp.spv");
createInfo.descriptorTypes = {VK_DESCRIPTOR_TYPE_STORAGE_IMAGE};
createInfo.pushConstantSize = sizeof(ComputePushConstants);
_context->pipelines->createComputePipeline("gradient", createInfo);
createInfo.shaderPath = _context->getAssets()->shaderPath("sky.comp.spv");
_context->pipelines->createComputePipeline("sky", createInfo);
_context->pipelines->createComputeInstance("background.gradient", "gradient");
_context->pipelines->createComputeInstance("background.sky", "sky");
_context->pipelines->setComputeInstanceStorageImage("background.gradient", 0,
_context->getSwapchain()->drawImage().imageView);
_context->pipelines->setComputeInstanceStorageImage("background.sky", 0,
_context->getSwapchain()->drawImage().imageView);
ComputeEffect gradient{};
gradient.name = "gradient";
gradient.data.data1 = glm::vec4(1, 0, 0, 1);
gradient.data.data2 = glm::vec4(0, 0, 1, 1);
ComputeEffect sky{};
sky.name = "sky";
sky.data.data1 = glm::vec4(0.1, 0.2, 0.4, 0.97);
_backgroundEffects.push_back(gradient);
_backgroundEffects.push_back(sky);
// Graphics env (cubemap) background mode
ComputeEffect env{}; env.name = "env";
_backgroundEffects.push_back(env);
// Prepare graphics pipeline for environment background (cubemap)
// Create an empty descriptor set layout to occupy sets 1 and 2 (shader uses set=0 and set=3)
{
VkDescriptorSetLayoutCreateInfo info{ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO };
info.bindingCount = 0;
info.pBindings = nullptr;
vkCreateDescriptorSetLayout(_context->getDevice()->device(), &info, nullptr, &_emptySetLayout);
}
GraphicsPipelineCreateInfo gp{};
gp.vertexShaderPath = _context->getAssets()->shaderPath("fullscreen.vert.spv");
gp.fragmentShaderPath = _context->getAssets()->shaderPath("background_env.frag.spv");
VkDescriptorSetLayout sl0 = _context->getDescriptorLayouts()->gpuSceneDataLayout();
VkDescriptorSetLayout sl1 = _emptySetLayout; // placeholder for set=1
VkDescriptorSetLayout sl2 = _emptySetLayout; // placeholder for set=2
// Ensure IBL layout exists (now owned by IBLManager)
VkDescriptorSetLayout sl3 = _emptySetLayout;
if (_context->ibl && _context->ibl->ensureLayout())
sl3 = _context->ibl->descriptorLayout();
gp.setLayouts = { sl0, sl1, sl2, sl3 };
gp.configure = [this](PipelineBuilder &b) {
b.set_input_topology(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST);
b.set_polygon_mode(VK_POLYGON_MODE_FILL);
b.set_cull_mode(VK_CULL_MODE_NONE, VK_FRONT_FACE_CLOCKWISE);
b.set_multisampling_none();
b.disable_depthtest();
b.disable_blending();
b.set_color_attachment_format(_context->getSwapchain()->drawImage().imageFormat);
};
_context->pipelines->createGraphicsPipeline("background.env", gp);
// Create fallback 1x1x6 black cube
{
const uint32_t faceCount = 6;
const uint32_t pixel = 0x00000000u; // RGBA8 black
std::vector<uint8_t> bytes(faceCount * 4);
for (uint32_t f = 0; f < faceCount; ++f) std::memcpy(bytes.data() + f * 4, &pixel, 4);
std::vector<VkBufferImageCopy> copies;
copies.reserve(faceCount);
for (uint32_t f = 0; f < faceCount; ++f) {
VkBufferImageCopy r{};
r.bufferOffset = f * 4;
r.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
r.imageSubresource.mipLevel = 0;
r.imageSubresource.baseArrayLayer = f;
r.imageSubresource.layerCount = 1;
r.imageExtent = {1,1,1};
copies.push_back(r);
}
_fallbackIblCube = _context->getResources()->create_image_compressed_layers(
bytes.data(), bytes.size(), VK_FORMAT_R8G8B8A8_UNORM, 1, faceCount, copies,
VK_IMAGE_USAGE_SAMPLED_BIT, VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT);
}
}
void BackgroundPass::execute(VkCommandBuffer)
{
// Background is executed via the render graph now.
}
void BackgroundPass::register_graph(RenderGraph *graph, RGImageHandle drawHandle, RGImageHandle depthHandle)
{
(void) depthHandle; // Reserved for future depth transitions.
if (!graph || !drawHandle.valid() || !_context) return;
if (_backgroundEffects.empty()) return;
// Route to compute or graphics depending on selected mode
const ComputeEffect &effect = _backgroundEffects[_currentEffect];
if (std::string_view(effect.name) == std::string_view("env"))
{
graph->add_pass(
"BackgroundEnv",
RGPassType::Graphics,
[drawHandle](RGPassBuilder &builder, EngineContext *) {
builder.write_color(drawHandle);
},
[this, drawHandle](VkCommandBuffer cmd, const RGPassResources &res, EngineContext *ctx) {
VkImageView drawView = res.image_view(drawHandle);
(void) drawView; // handled by RG
// pipeline + layout
if (!ctx->pipelines->getGraphics("background.env", _envPipeline, _envPipelineLayout)) return;
// Per-frame scene UBO
AllocatedBuffer ubo = ctx->getResources()->create_buffer(sizeof(GPUSceneData),
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VMA_MEMORY_USAGE_CPU_TO_GPU);
ctx->currentFrame->_deletionQueue.push_function([rm = ctx->getResources(), ubo]() { rm->destroy_buffer(ubo); });
VmaAllocationInfo ai{}; vmaGetAllocationInfo(ctx->getDevice()->allocator(), ubo.allocation, &ai);
*reinterpret_cast<GPUSceneData*>(ai.pMappedData) = ctx->getSceneData();
vmaFlushAllocation(ctx->getDevice()->allocator(), ubo.allocation, 0, sizeof(GPUSceneData));
VkDescriptorSet global = ctx->currentFrame->_frameDescriptors.allocate(
ctx->getDevice()->device(), ctx->getDescriptorLayouts()->gpuSceneDataLayout());
DescriptorWriter w0; w0.write_buffer(0, ubo.buffer, sizeof(GPUSceneData), 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
w0.update_set(ctx->getDevice()->device(), global);
// IBL set
VkImageView specView = _fallbackIblCube.imageView;
if (ctx->ibl && ctx->ibl->specular().imageView) specView = ctx->ibl->specular().imageView;
VkDescriptorSetLayout iblLayout = (ctx->ibl ? ctx->ibl->descriptorLayout() : _emptySetLayout);
VkDescriptorSet ibl = ctx->currentFrame->_frameDescriptors.allocate(
ctx->getDevice()->device(), iblLayout);
DescriptorWriter w3;
// Bind only specular at binding 0; other bindings are unused in this shader
w3.write_image(0, specView, ctx->getSamplers()->defaultLinear(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
w3.update_set(ctx->getDevice()->device(), ibl);
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _envPipeline);
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _envPipelineLayout, 0, 1, &global, 0, nullptr);
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _envPipelineLayout, 3, 1, &ibl, 0, nullptr);
VkExtent2D extent = ctx->getDrawExtent();
VkViewport vp{0.f, 0.f, float(extent.width), float(extent.height), 0.f, 1.f};
VkRect2D sc{{0,0}, extent};
vkCmdSetViewport(cmd, 0, 1, &vp);
vkCmdSetScissor(cmd, 0, 1, &sc);
vkCmdDraw(cmd, 3, 1, 0, 0);
}
);
}
else
{
graph->add_pass(
"Background",
RGPassType::Compute,
[drawHandle](RGPassBuilder &builder, EngineContext *) {
builder.write(drawHandle, RGImageUsage::ComputeWrite);
},
[this, drawHandle](VkCommandBuffer cmd, const RGPassResources &res, EngineContext *ctx) {
VkImageView drawView = res.image_view(drawHandle);
if (drawView != VK_NULL_HANDLE)
{
_context->pipelines->setComputeInstanceStorageImage("background.gradient", 0, drawView);
_context->pipelines->setComputeInstanceStorageImage("background.sky", 0, drawView);
}
ComputeEffect &eff = _backgroundEffects[_currentEffect];
ComputeDispatchInfo dispatchInfo = ComputeManager::createDispatch2D(
ctx->getDrawExtent().width, ctx->getDrawExtent().height);
dispatchInfo.pushConstants = &eff.data;
dispatchInfo.pushConstantSize = sizeof(ComputePushConstants);
const char *instanceName = (std::string_view(eff.name) == std::string_view("gradient"))
? "background.gradient"
: "background.sky";
ctx->pipelines->dispatchComputeInstance(cmd, instanceName, dispatchInfo);
}
);
}
}
void BackgroundPass::cleanup()
{
if (_context && _context->pipelines)
{
_context->pipelines->destroyComputeInstance("background.gradient");
_context->pipelines->destroyComputeInstance("background.sky");
_context->pipelines->destroyComputePipeline("gradient");
_context->pipelines->destroyComputePipeline("sky");
}
if (_envPipeline != VK_NULL_HANDLE || _envPipelineLayout != VK_NULL_HANDLE)
{
// Pipelines are owned by PipelineManager and destroyed there on cleanup/hot-reload
_envPipeline = VK_NULL_HANDLE;
_envPipelineLayout = VK_NULL_HANDLE;
}
if (_emptySetLayout)
{
vkDestroyDescriptorSetLayout(_context->getDevice()->device(), _emptySetLayout, nullptr);
_emptySetLayout = VK_NULL_HANDLE;
}
if (_fallbackIblCube.image)
{
_context->getResources()->destroy_image(_fallbackIblCube);
_fallbackIblCube = {};
}
fmt::print("BackgroundPass::cleanup()\n");
_backgroundEffects.clear();
}

View File

@@ -0,0 +1,36 @@
#pragma once
#include "render/renderpass.h"
#include "compute/vk_compute.h"
#include "render/graph/types.h"
class RenderGraph;
class BackgroundPass : public IRenderPass
{
public:
void init(EngineContext *context) override;
void cleanup() override;
void execute(VkCommandBuffer cmd) override;
const char *getName() const override { return "Background"; }
void register_graph(RenderGraph *graph, RGImageHandle drawHandle, RGImageHandle depthHandle);
void setCurrentEffect(int index) { _currentEffect = index; }
std::vector<ComputeEffect> &getEffects() { return _backgroundEffects; }
std::vector<ComputeEffect> _backgroundEffects;
int _currentEffect = 2;
private:
EngineContext *_context = nullptr;
void init_background_pipelines();
// Graphics env background pipeline
VkPipeline _envPipeline = VK_NULL_HANDLE;
VkPipelineLayout _envPipelineLayout = VK_NULL_HANDLE;
// Empty descriptor layout used as placeholder for sets 1 and 2
VkDescriptorSetLayout _emptySetLayout = VK_NULL_HANDLE;
// Fallback 1x1x6 black cube if IBL not loaded
AllocatedImage _fallbackIblCube{};
};

View File

@@ -0,0 +1,321 @@
#include "geometry.h"
#include <chrono>
#include <unordered_set>
#include "frame_resources.h"
#include "texture_cache.h"
#include "vk_descriptor_manager.h"
#include "vk_device.h"
#include "core/engine_context.h"
#include "core/vk_initializers.h"
#include "core/vk_resource.h"
#include "vk_mem_alloc.h"
#include "vk_scene.h"
#include "vk_swapchain.h"
#include "render/graph/graph.h"
// Basic conservative frustum test against RenderObject AABB.
// Clip space uses Vulkan Z0 (0..w). Returns true if any part of the box is inside.
bool is_visible(const RenderObject &obj, const glm::mat4 &viewproj)
{
const std::array<glm::vec3, 8> corners{
glm::vec3{+1, +1, +1}, glm::vec3{+1, +1, -1}, glm::vec3{+1, -1, +1}, glm::vec3{+1, -1, -1},
glm::vec3{-1, +1, +1}, glm::vec3{-1, +1, -1}, glm::vec3{-1, -1, +1}, glm::vec3{-1, -1, -1},
};
const glm::vec3 o = obj.bounds.origin;
const glm::vec3 e = obj.bounds.extents;
const glm::mat4 m = viewproj * obj.transform; // world -> clip
glm::vec4 clip[8];
for (int i = 0; i < 8; ++i)
{
const glm::vec3 p = o + corners[i] * e;
clip[i] = m * glm::vec4(p, 1.f);
}
auto all_out = [&](auto pred) {
for (int i = 0; i < 8; ++i)
{
if (!pred(clip[i])) return false;
}
return true;
};
// Clip volume in Vulkan (ZO): -w<=x<=w, -w<=y<=w, 0<=z<=w
if (all_out([](const glm::vec4 &v) { return v.x < -v.w; })) return false; // left
if (all_out([](const glm::vec4 &v) { return v.x > v.w; })) return false; // right
if (all_out([](const glm::vec4 &v) { return v.y < -v.w; })) return false; // bottom
if (all_out([](const glm::vec4 &v) { return v.y > v.w; })) return false; // top
if (all_out([](const glm::vec4 &v) { return v.z < 0.0f; })) return false; // near (ZO)
if (all_out([](const glm::vec4 &v) { return v.z > v.w; })) return false; // far
return true; // intersects or is fully inside
}
void GeometryPass::init(EngineContext *context)
{
_context = context;
}
void GeometryPass::execute(VkCommandBuffer)
{
// Geometry is executed via the render graph now.
}
void GeometryPass::register_graph(RenderGraph *graph,
RGImageHandle gbufferPosition,
RGImageHandle gbufferNormal,
RGImageHandle gbufferAlbedo,
RGImageHandle idHandle,
RGImageHandle depthHandle)
{
if (!graph || !gbufferPosition.valid() || !gbufferNormal.valid() || !gbufferAlbedo.valid() ||
!idHandle.valid() || !depthHandle.valid())
{
return;
}
graph->add_pass(
"Geometry",
RGPassType::Graphics,
[gbufferPosition, gbufferNormal, gbufferAlbedo, idHandle, depthHandle](RGPassBuilder &builder, EngineContext *ctx)
{
VkClearValue clear{};
clear.color = {{0.f, 0.f, 0.f, 0.f}};
builder.write_color(gbufferPosition, true, clear);
builder.write_color(gbufferNormal, true, clear);
builder.write_color(gbufferAlbedo, true, clear);
VkClearValue clearID{};
clearID.color.uint32[0] = 0u;
builder.write_color(idHandle, true, clearID);
// Reverse-Z: clear depth to 0.0
VkClearValue depthClear{};
depthClear.depthStencil = {0.f, 0};
builder.write_depth(depthHandle, true, depthClear);
// Register read buffers used by all draw calls (index + vertex SSBO)
if (ctx)
{
const DrawContext &dc = ctx->getMainDrawContext();
// Collect unique buffers to avoid duplicates
std::unordered_set<VkBuffer> indexSet;
std::unordered_set<VkBuffer> vertexSet;
indexSet.reserve(dc.OpaqueSurfaces.size() + dc.TransparentSurfaces.size());
vertexSet.reserve(dc.OpaqueSurfaces.size() + dc.TransparentSurfaces.size());
auto collect = [&](const std::vector<RenderObject>& v){
for (const auto &r : v)
{
if (r.indexBuffer) indexSet.insert(r.indexBuffer);
if (r.vertexBuffer) vertexSet.insert(r.vertexBuffer);
}
};
collect(dc.OpaqueSurfaces);
collect(dc.TransparentSurfaces);
for (VkBuffer b : indexSet)
builder.read_buffer(b, RGBufferUsage::IndexRead, 0, "geom.index");
for (VkBuffer b : vertexSet)
builder.read_buffer(b, RGBufferUsage::StorageRead, 0, "geom.vertex");
}
},
[this, gbufferPosition, gbufferNormal, gbufferAlbedo, idHandle, depthHandle](VkCommandBuffer cmd,
const RGPassResources &res,
EngineContext *ctx)
{
draw_geometry(cmd, ctx, res, gbufferPosition, gbufferNormal, gbufferAlbedo, idHandle, depthHandle);
});
}
void GeometryPass::draw_geometry(VkCommandBuffer cmd,
EngineContext *context,
const RGPassResources &resources,
RGImageHandle gbufferPosition,
RGImageHandle gbufferNormal,
RGImageHandle gbufferAlbedo,
RGImageHandle /*idHandle*/,
RGImageHandle depthHandle) const
{
EngineContext *ctxLocal = context ? context : _context;
if (!ctxLocal || !ctxLocal->currentFrame) return;
ResourceManager *resourceManager = ctxLocal->getResources();
DeviceManager *deviceManager = ctxLocal->getDevice();
DescriptorManager *descriptorLayouts = ctxLocal->getDescriptorLayouts();
if (!resourceManager || !deviceManager || !descriptorLayouts) return;
VkImageView positionView = resources.image_view(gbufferPosition);
VkImageView normalView = resources.image_view(gbufferNormal);
VkImageView albedoView = resources.image_view(gbufferAlbedo);
VkImageView depthView = resources.image_view(depthHandle);
if (positionView == VK_NULL_HANDLE || normalView == VK_NULL_HANDLE ||
albedoView == VK_NULL_HANDLE || depthView == VK_NULL_HANDLE)
{
return;
}
const auto& mainDrawContext = ctxLocal->getMainDrawContext();
const auto& sceneData = ctxLocal->getSceneData();
VkExtent2D drawExtent = ctxLocal->getDrawExtent();
auto start = std::chrono::system_clock::now();
std::vector<uint32_t> opaque_draws;
opaque_draws.reserve(mainDrawContext.OpaqueSurfaces.size());
for (int i = 0; i < mainDrawContext.OpaqueSurfaces.size(); i++)
{
if (is_visible(mainDrawContext.OpaqueSurfaces[i], sceneData.viewproj))
{
opaque_draws.push_back(i);
}
}
// Texture visibility-driven residency
if (ctxLocal->textures && !opaque_draws.empty())
{
std::unordered_set<VkDescriptorSet> seen;
seen.reserve(opaque_draws.size());
for (uint32_t idx : opaque_draws)
{
const RenderObject &r = mainDrawContext.OpaqueSurfaces[idx];
VkDescriptorSet set = r.material ? r.material->materialSet : VK_NULL_HANDLE;
if (set != VK_NULL_HANDLE && seen.insert(set).second)
{
ctxLocal->textures->markSetUsed(set, ctxLocal->frameIndex);
}
}
}
std::sort(opaque_draws.begin(), opaque_draws.end(), [&](const auto &iA, const auto &iB)
{
const RenderObject &A = mainDrawContext.OpaqueSurfaces[iA];
const RenderObject &B = mainDrawContext.OpaqueSurfaces[iB];
if (A.material == B.material)
{
return A.indexBuffer < B.indexBuffer;
}
return A.material < B.material;
});
// Dynamic rendering is now begun by the RenderGraph using the declared attachments.
AllocatedBuffer gpuSceneDataBuffer = resourceManager->create_buffer(sizeof(GPUSceneData),
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VMA_MEMORY_USAGE_CPU_TO_GPU);
ctxLocal->currentFrame->_deletionQueue.push_function([resourceManager, gpuSceneDataBuffer]()
{
resourceManager->destroy_buffer(gpuSceneDataBuffer);
});
VmaAllocationInfo allocInfo{};
vmaGetAllocationInfo(deviceManager->allocator(), gpuSceneDataBuffer.allocation, &allocInfo);
auto *sceneUniformData = static_cast<GPUSceneData *>(allocInfo.pMappedData);
*sceneUniformData = sceneData;
vmaFlushAllocation(deviceManager->allocator(), gpuSceneDataBuffer.allocation, 0, sizeof(GPUSceneData));
VkDescriptorSet globalDescriptor = ctxLocal->currentFrame->_frameDescriptors.allocate(
deviceManager->device(), descriptorLayouts->gpuSceneDataLayout());
DescriptorWriter writer;
writer.write_buffer(0, gpuSceneDataBuffer.buffer, sizeof(GPUSceneData), 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
writer.update_set(deviceManager->device(), globalDescriptor);
MaterialPipeline *lastPipeline = nullptr;
MaterialInstance *lastMaterial = nullptr;
VkBuffer lastIndexBuffer = VK_NULL_HANDLE;
auto draw = [&](const RenderObject &r)
{
if (r.material != lastMaterial)
{
lastMaterial = r.material;
if (r.material->pipeline != lastPipeline)
{
lastPipeline = r.material->pipeline;
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, r.material->pipeline->pipeline);
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, r.material->pipeline->layout, 0, 1,
&globalDescriptor, 0, nullptr);
VkViewport viewport{};
viewport.x = 0;
viewport.y = 0;
viewport.width = static_cast<float>(drawExtent.width);
viewport.height = static_cast<float>(drawExtent.height);
viewport.minDepth = 0.f;
viewport.maxDepth = 1.f;
vkCmdSetViewport(cmd, 0, 1, &viewport);
VkRect2D scissor{};
scissor.offset.x = 0;
scissor.offset.y = 0;
scissor.extent.width = drawExtent.width;
scissor.extent.height = drawExtent.height;
vkCmdSetScissor(cmd, 0, 1, &scissor);
}
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, r.material->pipeline->layout, 1, 1,
&r.material->materialSet, 0, nullptr);
if (ctxLocal->textures)
{
ctxLocal->textures->markSetUsed(r.material->materialSet, ctxLocal->frameIndex);
}
}
if (r.indexBuffer != lastIndexBuffer)
{
lastIndexBuffer = r.indexBuffer;
vkCmdBindIndexBuffer(cmd, r.indexBuffer, 0, VK_INDEX_TYPE_UINT32);
}
GPUDrawPushConstants push_constants{};
push_constants.worldMatrix = r.transform;
push_constants.vertexBuffer = r.vertexBufferAddress;
push_constants.objectID = r.objectID;
vkCmdPushConstants(cmd, r.material->pipeline->layout,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT,
0, sizeof(GPUDrawPushConstants), &push_constants);
vkCmdDrawIndexed(cmd, r.indexCount, 1, r.firstIndex, 0, 0);
if (ctxLocal->stats)
{
ctxLocal->stats->drawcall_count++;
ctxLocal->stats->triangle_count += r.indexCount / 3;
}
};
if (ctxLocal->stats)
{
ctxLocal->stats->drawcall_count = 0;
ctxLocal->stats->triangle_count = 0;
}
for (auto &r: opaque_draws)
{
draw(mainDrawContext.OpaqueSurfaces[r]);
}
// Transparent surfaces are rendered in a separate Transparent pass after lighting.
// RenderGraph will end dynamic rendering for this pass.
auto end = std::chrono::system_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
if (ctxLocal->stats)
{
ctxLocal->stats->mesh_draw_time = elapsed.count() / 1000.f;
}
}
void GeometryPass::cleanup()
{
fmt::print("GeometryPass::cleanup()\n");
}

View File

@@ -0,0 +1,35 @@
#pragma once
#include "render/renderpass.h"
#include <render/graph/types.h>
class SwapchainManager;
class RenderGraph;
class GeometryPass : public IRenderPass
{
public:
void init(EngineContext *context) override;
void cleanup() override;
void execute(VkCommandBuffer cmd) override;
const char *getName() const override { return "Geometry"; }
void register_graph(RenderGraph *graph,
RGImageHandle gbufferPosition,
RGImageHandle gbufferNormal,
RGImageHandle gbufferAlbedo,
RGImageHandle idHandle,
RGImageHandle depthHandle);
private:
EngineContext *_context = nullptr;
void draw_geometry(VkCommandBuffer cmd,
EngineContext *context,
const class RGPassResources &resources,
RGImageHandle gbufferPosition,
RGImageHandle gbufferNormal,
RGImageHandle gbufferAlbedo,
RGImageHandle idHandle,
RGImageHandle depthHandle) const;
};

View File

@@ -0,0 +1,113 @@
#include "imgui_pass.h"
#include "imgui.h"
#include "imgui_impl_sdl2.h"
#include "imgui_impl_vulkan.h"
#include "vk_device.h"
#include "vk_swapchain.h"
#include "core/vk_initializers.h"
#include "core/engine_context.h"
#include "render/graph/graph.h"
void ImGuiPass::init(EngineContext *context)
{
_context = context;
VkDescriptorPoolSize pool_sizes[] = {
{VK_DESCRIPTOR_TYPE_SAMPLER, 1000},
{VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1000},
{VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 1000},
{VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1000},
{VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, 1000},
{VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, 1000},
{VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1000},
{VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1000},
{VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1000},
{VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, 1000},
{VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1000}
};
VkDescriptorPoolCreateInfo pool_info = {};
pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
pool_info.maxSets = 1000;
pool_info.poolSizeCount = (uint32_t) std::size(pool_sizes);
pool_info.pPoolSizes = pool_sizes;
VkDescriptorPool imguiPool;
VK_CHECK(vkCreateDescriptorPool(_context->device->device(), &pool_info, nullptr, &imguiPool));
ImGui::CreateContext();
ImGui_ImplSDL2_InitForVulkan(_context->window);
ImGui_ImplVulkan_InitInfo init_info = {};
init_info.Instance = _context->getDevice()->instance();
init_info.PhysicalDevice = _context->getDevice()->physicalDevice();
init_info.Device = _context->getDevice()->device();
init_info.Queue = _context->getDevice()->graphicsQueue();
init_info.DescriptorPool = imguiPool;
init_info.MinImageCount = 3;
init_info.ImageCount = 3;
init_info.UseDynamicRendering = true;
init_info.PipelineRenderingCreateInfo = {.sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO};
init_info.PipelineRenderingCreateInfo.colorAttachmentCount = 1;
auto _swapchainImageFormat = _context->getSwapchain()->swapchainImageFormat();
init_info.PipelineRenderingCreateInfo.pColorAttachmentFormats = &_swapchainImageFormat;
init_info.MSAASamples = VK_SAMPLE_COUNT_1_BIT;
ImGui_ImplVulkan_Init(&init_info);
ImGui_ImplVulkan_CreateFontsTexture();
// add the destroy the imgui created structures
_deletionQueue.push_function([=]() {
ImGui_ImplVulkan_Shutdown();
vkDestroyDescriptorPool(_context->getDevice()->device(), imguiPool, nullptr);
});
}
void ImGuiPass::cleanup()
{
fmt::print("ImGuiPass::cleanup()\n");
_deletionQueue.flush();
}
void ImGuiPass::execute(VkCommandBuffer)
{
// ImGui is executed via the render graph now.
}
void ImGuiPass::register_graph(RenderGraph *graph, RGImageHandle swapchainHandle)
{
if (!graph || !swapchainHandle.valid()) return;
graph->add_pass(
"ImGui",
RGPassType::Graphics,
[swapchainHandle](RGPassBuilder &builder, EngineContext *)
{
builder.write_color(swapchainHandle, false, {});
},
[this, swapchainHandle](VkCommandBuffer cmd, const RGPassResources &res, EngineContext *ctx)
{
draw_imgui(cmd, ctx, res, swapchainHandle);
});
}
void ImGuiPass::draw_imgui(VkCommandBuffer cmd,
EngineContext *context,
const RGPassResources &resources,
RGImageHandle targetHandle) const
{
EngineContext *ctxLocal = context ? context : _context;
if (!ctxLocal) return;
VkImageView targetImageView = resources.image_view(targetHandle);
if (targetImageView == VK_NULL_HANDLE) return;
// Dynamic rendering is handled by the RenderGraph; just render draw data.
ImGui_ImplVulkan_RenderDrawData(ImGui::GetDrawData(), cmd);
}

View File

@@ -0,0 +1,29 @@
#pragma once
#include "render/renderpass.h"
#include "core/vk_types.h"
#include <render/graph/types.h>
class ImGuiPass : public IRenderPass
{
public:
void init(EngineContext *context) override;
void cleanup() override;
void execute(VkCommandBuffer cmd) override;
const char *getName() const override { return "ImGui"; }
void register_graph(class RenderGraph *graph,
RGImageHandle swapchainHandle);
private:
EngineContext *_context = nullptr;
void draw_imgui(VkCommandBuffer cmd,
EngineContext *context,
const class RGPassResources &resources,
RGImageHandle targetHandle) const;
DeletionQueue _deletionQueue;
};

View File

@@ -0,0 +1,329 @@
#include "lighting.h"
#include "frame_resources.h"
#include "vk_descriptor_manager.h"
#include "vk_device.h"
#include "core/engine_context.h"
#include "core/vk_initializers.h"
#include "core/vk_resource.h"
#include "render/pipelines.h"
#include "core/vk_pipeline_manager.h"
#include "core/asset_manager.h"
#include "core/vk_descriptors.h"
#include "core/config.h"
#include "vk_mem_alloc.h"
#include "vk_sampler_manager.h"
#include "vk_swapchain.h"
#include "render/graph/graph.h"
#include <array>
#include <cstring>
#include "ibl_manager.h"
#include "vk_raytracing.h"
void LightingPass::init(EngineContext *context)
{
_context = context;
// Placeholder empty set layout to keep array sizes stable if needed
{
VkDescriptorSetLayoutCreateInfo info{ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO };
info.bindingCount = 0; info.pBindings = nullptr;
vkCreateDescriptorSetLayout(_context->getDevice()->device(), &info, nullptr, &_emptySetLayout);
}
// Build descriptor layout for GBuffer inputs
{
DescriptorLayoutBuilder builder;
builder.add_binding(0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
builder.add_binding(1, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
builder.add_binding(2, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
_gBufferInputDescriptorLayout = builder.build(
_context->getDevice()->device(), VK_SHADER_STAGE_FRAGMENT_BIT,
nullptr, VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT);
}
// Allocate and write GBuffer descriptor set
_gBufferInputDescriptorSet = _context->getDescriptors()->allocate(
_context->getDevice()->device(), _gBufferInputDescriptorLayout);
{
DescriptorWriter writer;
writer.write_image(0, _context->getSwapchain()->gBufferPosition().imageView, _context->getSamplers()->defaultLinear(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
writer.write_image(1, _context->getSwapchain()->gBufferNormal().imageView, _context->getSamplers()->defaultLinear(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
writer.write_image(2, _context->getSwapchain()->gBufferAlbedo().imageView, _context->getSamplers()->defaultLinear(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
writer.update_set(_context->getDevice()->device(), _gBufferInputDescriptorSet);
}
// Shadow map descriptor layout (set = 2, updated per-frame). Use array of cascades
{
DescriptorLayoutBuilder builder;
builder.add_binding(0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, kShadowCascadeCount);
_shadowDescriptorLayout = builder.build(
_context->getDevice()->device(), VK_SHADER_STAGE_FRAGMENT_BIT,
nullptr, VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT);
}
// Build lighting pipelines (RT and non-RT) through PipelineManager
// Ensure IBL layout exists (moved to IBLManager)
VkDescriptorSetLayout iblLayout = _emptySetLayout;
if (_context->ibl && _context->ibl->ensureLayout())
iblLayout = _context->ibl->descriptorLayout();
VkDescriptorSetLayout layouts[] = {
_context->getDescriptorLayouts()->gpuSceneDataLayout(), // set=0
_gBufferInputDescriptorLayout, // set=1
_shadowDescriptorLayout, // set=2
iblLayout // set=3
};
GraphicsPipelineCreateInfo baseInfo{};
baseInfo.vertexShaderPath = _context->getAssets()->shaderPath("fullscreen.vert.spv");
baseInfo.setLayouts.assign(std::begin(layouts), std::end(layouts));
baseInfo.configure = [this](PipelineBuilder &b) {
b.set_input_topology(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST);
b.set_polygon_mode(VK_POLYGON_MODE_FILL);
b.set_cull_mode(VK_CULL_MODE_NONE, VK_FRONT_FACE_CLOCKWISE);
b.set_multisampling_none();
b.enable_blending_alphablend();
b.disable_depthtest();
b.set_color_attachment_format(_context->getSwapchain()->drawImage().imageFormat);
};
// Non-RT variant (no TLAS required)
auto infoNoRT = baseInfo;
infoNoRT.fragmentShaderPath = _context->getAssets()->shaderPath("deferred_lighting_nort.frag.spv");
_context->pipelines->createGraphicsPipeline("deferred_lighting.nort", infoNoRT);
// RT variant (requires GL_EXT_ray_query and TLAS bound at set=0,binding=1)
auto infoRT = baseInfo;
infoRT.fragmentShaderPath = _context->getAssets()->shaderPath("deferred_lighting.frag.spv");
_context->pipelines->createGraphicsPipeline("deferred_lighting.rt", infoRT);
_deletionQueue.push_function([&]() {
// Pipelines are owned by PipelineManager; only destroy our local descriptor set layout
vkDestroyDescriptorSetLayout(_context->getDevice()->device(), _gBufferInputDescriptorLayout, nullptr);
vkDestroyDescriptorSetLayout(_context->getDevice()->device(), _shadowDescriptorLayout, nullptr);
if (_emptySetLayout) vkDestroyDescriptorSetLayout(_context->getDevice()->device(), _emptySetLayout, nullptr);
});
// Create tiny fallback textures for IBL (grey 2D and RG LUT)
// so shaders can safely sample even when IBL isn't loaded.
{
const uint32_t pixel = 0xFF333333u; // RGBA8 grey
_fallbackIbl2D = _context->getResources()->create_image(&pixel, VkExtent3D{1,1,1},
VK_FORMAT_R8G8B8A8_UNORM,
VK_IMAGE_USAGE_SAMPLED_BIT);
}
{
// 1x1 RG UNORM for BRDF LUT fallback
const uint16_t rg = 0x0000u; // R=0,G=0
_fallbackBrdfLut2D = _context->getResources()->create_image(
&rg, VkExtent3D{1,1,1}, VK_FORMAT_R8G8_UNORM, VK_IMAGE_USAGE_SAMPLED_BIT);
}
}
void LightingPass::execute(VkCommandBuffer)
{
// Lighting is executed via the render graph now.
}
void LightingPass::register_graph(RenderGraph *graph,
RGImageHandle drawHandle,
RGImageHandle gbufferPosition,
RGImageHandle gbufferNormal,
RGImageHandle gbufferAlbedo,
std::span<RGImageHandle> shadowCascades)
{
if (!graph || !drawHandle.valid() || !gbufferPosition.valid() || !gbufferNormal.valid() || !gbufferAlbedo.valid())
{
return;
}
graph->add_pass(
"Lighting",
RGPassType::Graphics,
[drawHandle, gbufferPosition, gbufferNormal, gbufferAlbedo, shadowCascades](RGPassBuilder &builder, EngineContext *)
{
builder.read(gbufferPosition, RGImageUsage::SampledFragment);
builder.read(gbufferNormal, RGImageUsage::SampledFragment);
builder.read(gbufferAlbedo, RGImageUsage::SampledFragment);
for (size_t i = 0; i < shadowCascades.size(); ++i)
{
if (shadowCascades[i].valid()) builder.read(shadowCascades[i], RGImageUsage::SampledFragment);
}
builder.write_color(drawHandle);
},
[this, drawHandle, shadowCascades](VkCommandBuffer cmd, const RGPassResources &res, EngineContext *ctx)
{
draw_lighting(cmd, ctx, res, drawHandle, shadowCascades);
});
}
void LightingPass::draw_lighting(VkCommandBuffer cmd,
EngineContext *context,
const RGPassResources &resources,
RGImageHandle drawHandle,
std::span<RGImageHandle> shadowCascades)
{
EngineContext *ctxLocal = context ? context : _context;
if (!ctxLocal || !ctxLocal->currentFrame) return;
ResourceManager *resourceManager = ctxLocal->getResources();
DeviceManager *deviceManager = ctxLocal->getDevice();
DescriptorManager *descriptorLayouts = ctxLocal->getDescriptorLayouts();
PipelineManager *pipelineManager = ctxLocal->pipelines;
if (!resourceManager || !deviceManager || !descriptorLayouts || !pipelineManager) return;
VkImageView drawView = resources.image_view(drawHandle);
if (drawView == VK_NULL_HANDLE) return;
// Choose RT only if TLAS is valid; otherwise fall back to non-RT.
const bool haveRTFeatures = ctxLocal->getDevice()->supportsAccelerationStructure();
const VkAccelerationStructureKHR tlas = (ctxLocal->ray ? ctxLocal->ray->tlas() : VK_NULL_HANDLE);
const VkDeviceAddress tlasAddr = (ctxLocal->ray ? ctxLocal->ray->tlasAddress() : 0);
const bool useRT = haveRTFeatures && (ctxLocal->shadowSettings.mode != 0u) && (tlas != VK_NULL_HANDLE) && (tlasAddr != 0);
const char* pipeName = useRT ? "deferred_lighting.rt" : "deferred_lighting.nort";
if (!pipelineManager->getGraphics(pipeName, _pipeline, _pipelineLayout))
{
// Try the other variant as a fallback
const char* fallback = useRT ? "deferred_lighting.nort" : "deferred_lighting.rt";
if (!pipelineManager->getGraphics(fallback, _pipeline, _pipelineLayout))
return; // Neither pipeline is ready
}
// Dynamic rendering is handled by the RenderGraph using the declared draw attachment.
AllocatedBuffer gpuSceneDataBuffer = resourceManager->create_buffer(
sizeof(GPUSceneData), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VMA_MEMORY_USAGE_CPU_TO_GPU);
ctxLocal->currentFrame->_deletionQueue.push_function([resourceManager, gpuSceneDataBuffer]()
{
resourceManager->destroy_buffer(gpuSceneDataBuffer);
});
VmaAllocationInfo allocInfo{};
vmaGetAllocationInfo(deviceManager->allocator(), gpuSceneDataBuffer.allocation, &allocInfo);
auto *sceneUniformData = static_cast<GPUSceneData *>(allocInfo.pMappedData);
*sceneUniformData = ctxLocal->getSceneData();
vmaFlushAllocation(deviceManager->allocator(), gpuSceneDataBuffer.allocation, 0, sizeof(GPUSceneData));
VkDescriptorSet globalDescriptor = ctxLocal->currentFrame->_frameDescriptors.allocate(
deviceManager->device(), descriptorLayouts->gpuSceneDataLayout());
DescriptorWriter writer;
writer.write_buffer(0, gpuSceneDataBuffer.buffer, sizeof(GPUSceneData), 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
// Only write TLAS when using the RT pipeline and we have a valid TLAS
if (useRT)
{
writer.write_acceleration_structure(1, tlas);
}
writer.update_set(deviceManager->device(), globalDescriptor);
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _pipeline);
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _pipelineLayout, 0, 1, &globalDescriptor, 0,
nullptr);
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _pipelineLayout, 1, 1,
&_gBufferInputDescriptorSet, 0, nullptr);
// Allocate and write shadow descriptor set for this frame (set = 2).
// When RT is enabled, TLAS is bound in the global set at (set=0, binding=1)
// via DescriptorManager::gpuSceneDataLayout(). See docs/RayTracing.md.
VkDescriptorSet shadowSet = ctxLocal->currentFrame->_frameDescriptors.allocate(
deviceManager->device(), _shadowDescriptorLayout);
{
const uint32_t cascadeCount = std::min<uint32_t>(kShadowCascadeCount, static_cast<uint32_t>(shadowCascades.size()));
std::array<VkDescriptorImageInfo, kShadowCascadeCount> infos{};
for (uint32_t i = 0; i < cascadeCount; ++i)
{
infos[i].sampler = ctxLocal->getSamplers()->shadowLinearClamp();
infos[i].imageView = resources.image_view(shadowCascades[i]);
infos[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
VkWriteDescriptorSet write{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET};
write.dstSet = shadowSet;
write.dstBinding = 0;
write.descriptorCount = cascadeCount;
write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
write.pImageInfo = infos.data();
vkUpdateDescriptorSets(deviceManager->device(), 1, &write, 0, nullptr);
}
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _pipelineLayout, 2, 1, &shadowSet, 0, nullptr);
// IBL descriptor set (set = 3). Use loaded IBL if present, otherwise fall back to black.
VkImageView specView = _fallbackIbl2D.imageView;
VkImageView brdfView = _fallbackBrdfLut2D.imageView;
VkBuffer shBuf = VK_NULL_HANDLE; VkDeviceSize shSize = sizeof(glm::vec4)*9;
if (ctxLocal->ibl)
{
if (ctxLocal->ibl->specular().imageView) specView = ctxLocal->ibl->specular().imageView;
if (ctxLocal->ibl->brdf().imageView) brdfView = ctxLocal->ibl->brdf().imageView;
if (ctxLocal->ibl->hasSH()) shBuf = ctxLocal->ibl->shBuffer().buffer;
}
// If SH missing, create a zero buffer for this frame
AllocatedBuffer shZero{};
if (shBuf == VK_NULL_HANDLE)
{
shZero = resourceManager->create_buffer(shSize, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VMA_MEMORY_USAGE_CPU_TO_GPU);
std::memset(shZero.info.pMappedData, 0, shSize);
vmaFlushAllocation(deviceManager->allocator(), shZero.allocation, 0, shSize);
shBuf = shZero.buffer;
ctxLocal->currentFrame->_deletionQueue.push_function([resourceManager, shZero]() { resourceManager->destroy_buffer(shZero); });
}
// Allocate from IBL layout (must exist because pipeline was created with it)
VkDescriptorSetLayout iblSetLayout = (ctxLocal->ibl ? ctxLocal->ibl->descriptorLayout() : _emptySetLayout);
VkDescriptorSet iblSet = ctxLocal->currentFrame->_frameDescriptors.allocate(
deviceManager->device(), iblSetLayout);
{
DescriptorWriter w;
w.write_image(0, specView, ctxLocal->getSamplers()->defaultLinear(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
w.write_image(1, brdfView, ctxLocal->getSamplers()->defaultLinear(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
w.write_buffer(2, shBuf, shSize, 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
w.update_set(deviceManager->device(), iblSet);
}
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _pipelineLayout, 3, 1, &iblSet, 0, nullptr);
VkViewport viewport{};
viewport.x = 0;
viewport.y = 0;
viewport.width = static_cast<float>(ctxLocal->getDrawExtent().width);
viewport.height = static_cast<float>(ctxLocal->getDrawExtent().height);
viewport.minDepth = 0.f;
viewport.maxDepth = 1.f;
vkCmdSetViewport(cmd, 0, 1, &viewport);
VkRect2D scissor{};
scissor.offset = {0, 0};
scissor.extent = {ctxLocal->getDrawExtent().width, ctxLocal->getDrawExtent().height};
vkCmdSetScissor(cmd, 0, 1, &scissor);
vkCmdDraw(cmd, 3, 1, 0, 0);
// RenderGraph ends rendering.
}
void LightingPass::cleanup()
{
if (_context && _context->getResources())
{
if (_fallbackIbl2D.image)
{
_context->getResources()->destroy_image(_fallbackIbl2D);
_fallbackIbl2D = {};
}
if (_fallbackBrdfLut2D.image)
{
_context->getResources()->destroy_image(_fallbackBrdfLut2D);
_fallbackBrdfLut2D = {};
}
}
_deletionQueue.flush();
fmt::print("LightingPass::cleanup()\n");
}

View File

@@ -0,0 +1,45 @@
#pragma once
#include "render/renderpass.h"
#include <render/graph/types.h>
#include <span>
class LightingPass : public IRenderPass
{
public:
void init(EngineContext *context) override;
void cleanup() override;
void execute(VkCommandBuffer cmd) override;
const char *getName() const override { return "Lighting"; }
// Register lighting; consumes GBuffer + CSM cascades.
void register_graph(class RenderGraph *graph,
RGImageHandle drawHandle,
RGImageHandle gbufferPosition,
RGImageHandle gbufferNormal,
RGImageHandle gbufferAlbedo, std::span<RGImageHandle> shadowCascades);
private:
EngineContext *_context = nullptr;
VkDescriptorSetLayout _gBufferInputDescriptorLayout = VK_NULL_HANDLE;
VkDescriptorSet _gBufferInputDescriptorSet = VK_NULL_HANDLE;
VkDescriptorSetLayout _shadowDescriptorLayout = VK_NULL_HANDLE; // set=2 (array)
// Fallbacks if IBL is not loaded
AllocatedImage _fallbackIbl2D{}; // 1x1 black
AllocatedImage _fallbackBrdfLut2D{}; // 1x1 RG, black
VkPipelineLayout _pipelineLayout = VK_NULL_HANDLE;
VkPipeline _pipeline = VK_NULL_HANDLE;
VkDescriptorSetLayout _emptySetLayout = VK_NULL_HANDLE; // placeholder if IBL layout missing
void draw_lighting(VkCommandBuffer cmd,
EngineContext *context,
const class RGPassResources &resources,
RGImageHandle drawHandle,
std::span<RGImageHandle> shadowCascades);
DeletionQueue _deletionQueue;
};

View File

@@ -0,0 +1,205 @@
#include "shadow.h"
#include <unordered_set>
#include <string>
#include "core/engine_context.h"
#include "render/graph/graph.h"
#include "render/graph/builder.h"
#include "vk_swapchain.h"
#include "vk_scene.h"
#include "frame_resources.h"
#include "vk_descriptor_manager.h"
#include "vk_device.h"
#include "vk_resource.h"
#include "core/vk_initializers.h"
#include "core/vk_pipeline_manager.h"
#include "core/asset_manager.h"
#include "render/pipelines.h"
#include "core/vk_types.h"
#include "core/config.h"
void ShadowPass::init(EngineContext *context)
{
_context = context;
if (!_context || !_context->pipelines) return;
// Build a depth-only graphics pipeline for shadow map rendering
// Keep push constants matching current shader layout for now
VkPushConstantRange pc{};
pc.offset = 0;
// Push constants layout in shadow.vert is GPUDrawPushConstants + cascade index, rounded to 16 bytes
const uint32_t pcRaw = static_cast<uint32_t>(sizeof(GPUDrawPushConstants) + sizeof(uint32_t));
const uint32_t pcAligned = (pcRaw + 15u) & ~15u; // 16-byte alignment to match std430 expectations
pc.size = pcAligned;
pc.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
GraphicsPipelineCreateInfo info{};
info.vertexShaderPath = _context->getAssets()->shaderPath("shadow.vert.spv");
info.fragmentShaderPath = _context->getAssets()->shaderPath("shadow.frag.spv");
info.setLayouts = { _context->getDescriptorLayouts()->gpuSceneDataLayout() };
info.pushConstants = { pc };
info.configure = [this](PipelineBuilder &b) {
b.set_input_topology(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST);
b.set_polygon_mode(VK_POLYGON_MODE_FILL);
b.set_cull_mode(VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE);
b.set_multisampling_none();
b.disable_blending();
// Keep reverse-Z convention for shadow maps to match engine depth usage
b.enable_depthtest(true, VK_COMPARE_OP_GREATER_OR_EQUAL);
b.set_depth_format(VK_FORMAT_D32_SFLOAT);
// Static depth bias to help with surface acne (tune later)
b._rasterizer.depthBiasEnable = VK_TRUE;
b._rasterizer.depthBiasConstantFactor = kShadowDepthBiasConstant;
b._rasterizer.depthBiasSlopeFactor = kShadowDepthBiasSlope;
b._rasterizer.depthBiasClamp = 0.0f;
};
_context->pipelines->createGraphicsPipeline("mesh.shadow", info);
}
void ShadowPass::cleanup()
{
// Nothing yet; pipelines and descriptors will be added later
fmt::print("ShadowPass::cleanup()\n");
}
void ShadowPass::execute(VkCommandBuffer)
{
// Shadow rendering is done via the RenderGraph registration.
}
void ShadowPass::register_graph(RenderGraph *graph, std::span<RGImageHandle> cascades, VkExtent2D extent)
{
if (!graph || cascades.empty()) return;
for (uint32_t i = 0; i < cascades.size(); ++i)
{
RGImageHandle shadowDepth = cascades[i];
if (!shadowDepth.valid()) continue;
std::string passName = std::string("ShadowMap[") + std::to_string(i) + "]";
graph->add_pass(
passName.c_str(),
RGPassType::Graphics,
[shadowDepth](RGPassBuilder &builder, EngineContext *ctx)
{
VkClearValue clear{}; clear.depthStencil = {0.f, 0};
builder.write_depth(shadowDepth, true, clear);
// Ensure index/vertex buffers are tracked as reads (like Geometry)
if (ctx)
{
const DrawContext &dc = ctx->getMainDrawContext();
std::unordered_set<VkBuffer> indexSet;
std::unordered_set<VkBuffer> vertexSet;
auto collect = [&](const std::vector<RenderObject> &v)
{
for (const auto &r : v)
{
if (r.indexBuffer) indexSet.insert(r.indexBuffer);
if (r.vertexBuffer) vertexSet.insert(r.vertexBuffer);
}
};
collect(dc.OpaqueSurfaces);
// Ignore transparent for shadow map
for (VkBuffer b : indexSet)
builder.read_buffer(b, RGBufferUsage::IndexRead, 0, "shadow.index");
for (VkBuffer b : vertexSet)
builder.read_buffer(b, RGBufferUsage::StorageRead, 0, "shadow.vertex");
}
},
[this, shadowDepth, extent, i](VkCommandBuffer cmd, const RGPassResources &res, EngineContext *ctx)
{
draw_shadow(cmd, ctx, res, shadowDepth, extent, i);
});
}
}
void ShadowPass::draw_shadow(VkCommandBuffer cmd,
EngineContext *context,
const RGPassResources &/*resources*/,
RGImageHandle /*shadowDepth*/,
VkExtent2D extent,
uint32_t cascadeIndex) const
{
EngineContext *ctxLocal = context ? context : _context;
if (!ctxLocal || !ctxLocal->currentFrame) return;
ResourceManager *resourceManager = ctxLocal->getResources();
DeviceManager *deviceManager = ctxLocal->getDevice();
DescriptorManager *descriptorLayouts = ctxLocal->getDescriptorLayouts();
PipelineManager *pipelineManager = ctxLocal->pipelines;
if (!resourceManager || !deviceManager || !descriptorLayouts || !pipelineManager) return;
VkPipeline pipeline{}; VkPipelineLayout layout{};
if (!pipelineManager->getGraphics("mesh.shadow", pipeline, layout)) return;
// Create and upload per-pass scene UBO
AllocatedBuffer gpuSceneDataBuffer = resourceManager->create_buffer(
sizeof(GPUSceneData), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VMA_MEMORY_USAGE_CPU_TO_GPU);
ctxLocal->currentFrame->_deletionQueue.push_function([resourceManager, gpuSceneDataBuffer]()
{
resourceManager->destroy_buffer(gpuSceneDataBuffer);
});
VmaAllocationInfo allocInfo{};
vmaGetAllocationInfo(deviceManager->allocator(), gpuSceneDataBuffer.allocation, &allocInfo);
auto *sceneUniformData = static_cast<GPUSceneData *>(allocInfo.pMappedData);
*sceneUniformData = ctxLocal->getSceneData();
vmaFlushAllocation(deviceManager->allocator(), gpuSceneDataBuffer.allocation, 0, sizeof(GPUSceneData));
VkDescriptorSet globalDescriptor = ctxLocal->currentFrame->_frameDescriptors.allocate(
deviceManager->device(), descriptorLayouts->gpuSceneDataLayout());
DescriptorWriter writer;
writer.write_buffer(0, gpuSceneDataBuffer.buffer, sizeof(GPUSceneData), 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
writer.update_set(deviceManager->device(), globalDescriptor);
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, layout, 0, 1, &globalDescriptor, 0, nullptr);
VkViewport viewport{};
viewport.x = 0;
viewport.y = 0;
viewport.width = static_cast<float>(extent.width);
viewport.height = static_cast<float>(extent.height);
viewport.minDepth = 0.f;
viewport.maxDepth = 1.f;
vkCmdSetViewport(cmd, 0, 1, &viewport);
VkRect2D scissor{};
scissor.offset = {0, 0};
scissor.extent = extent;
vkCmdSetScissor(cmd, 0, 1, &scissor);
const DrawContext &dc = ctxLocal->getMainDrawContext();
VkBuffer lastIndexBuffer = VK_NULL_HANDLE;
struct ShadowPC
{
GPUDrawPushConstants draw;
uint32_t cascadeIndex;
};
for (const auto &r : dc.OpaqueSurfaces)
{
if (r.indexBuffer != lastIndexBuffer)
{
lastIndexBuffer = r.indexBuffer;
vkCmdBindIndexBuffer(cmd, r.indexBuffer, 0, VK_INDEX_TYPE_UINT32);
}
ShadowPC spc{};
spc.draw.worldMatrix = r.transform;
spc.draw.vertexBuffer = r.vertexBufferAddress;
spc.draw.objectID = r.objectID;
spc.cascadeIndex = cascadeIndex;
vkCmdPushConstants(cmd, layout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(ShadowPC), &spc);
vkCmdDrawIndexed(cmd, r.indexCount, 1, r.firstIndex, 0, 0);
}
}

View File

@@ -0,0 +1,33 @@
#pragma once
#include "render/renderpass.h"
#include <render/graph/types.h>
#include <span>
class RenderGraph;
class EngineContext;
class RGPassResources;
// Depth-only directional shadow map pass (CSM-ready API)
class ShadowPass : public IRenderPass
{
public:
void init(EngineContext *context) override;
void cleanup() override;
void execute(VkCommandBuffer cmd) override;
const char *getName() const override { return "ShadowMap"; }
// Register N cascades; one graphics pass per cascade.
void register_graph(RenderGraph *graph, std::span<RGImageHandle> cascades, VkExtent2D extent);
private:
EngineContext *_context = nullptr;
void draw_shadow(VkCommandBuffer cmd,
EngineContext *context,
const RGPassResources &resources,
RGImageHandle shadowDepth,
VkExtent2D extent,
uint32_t cascadeIndex) const;
};

View File

@@ -0,0 +1,122 @@
#include "tonemap.h"
#include <core/engine_context.h>
#include <core/vk_descriptors.h>
#include <core/vk_descriptor_manager.h>
#include <core/vk_pipeline_manager.h>
#include <core/asset_manager.h>
#include <core/vk_device.h>
#include <core/vk_resource.h>
#include <vk_sampler_manager.h>
#include <render/graph/graph.h>
#include <render/graph/resources.h>
#include "frame_resources.h"
struct TonemapPush
{
float exposure;
int mode;
};
void TonemapPass::init(EngineContext *context)
{
_context = context;
_inputSetLayout = _context->getDescriptorLayouts()->singleImageLayout();
GraphicsPipelineCreateInfo info{};
info.vertexShaderPath = _context->getAssets()->shaderPath("fullscreen.vert.spv");
info.fragmentShaderPath = _context->getAssets()->shaderPath("tonemap.frag.spv");
info.setLayouts = { _inputSetLayout };
VkPushConstantRange pcr{};
pcr.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
pcr.offset = 0;
pcr.size = sizeof(TonemapPush);
info.pushConstants = { pcr };
info.configure = [this](PipelineBuilder &b) {
b.set_input_topology(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST);
b.set_polygon_mode(VK_POLYGON_MODE_FILL);
b.set_cull_mode(VK_CULL_MODE_NONE, VK_FRONT_FACE_CLOCKWISE);
b.set_multisampling_none();
b.disable_depthtest();
b.disable_blending();
b.set_color_attachment_format(VK_FORMAT_R8G8B8A8_UNORM);
};
_context->pipelines->createGraphicsPipeline("tonemap", info);
MaterialPipeline mp{};
_context->pipelines->getMaterialPipeline("tonemap", mp);
_pipeline = mp.pipeline;
_pipelineLayout = mp.layout;
}
void TonemapPass::cleanup()
{
_deletionQueue.flush();
}
void TonemapPass::execute(VkCommandBuffer)
{
// Executed via render graph.
}
RGImageHandle TonemapPass::register_graph(RenderGraph *graph, RGImageHandle hdrInput)
{
if (!graph || !hdrInput.valid()) return {};
RGImageDesc desc{};
desc.name = "ldr.tonemap";
desc.format = VK_FORMAT_R8G8B8A8_UNORM;
desc.extent = _context->getDrawExtent();
desc.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
RGImageHandle ldr = graph->create_image(desc);
graph->add_pass(
"Tonemap",
RGPassType::Graphics,
[hdrInput, ldr](RGPassBuilder &builder, EngineContext *) {
builder.read(hdrInput, RGImageUsage::SampledFragment);
builder.write_color(ldr, true /*clear*/);
},
[this, hdrInput](VkCommandBuffer cmd, const RGPassResources &res, EngineContext *ctx) {
draw_tonemap(cmd, ctx, res, hdrInput);
}
);
return ldr;
}
void TonemapPass::draw_tonemap(VkCommandBuffer cmd, EngineContext *ctx, const RGPassResources &res,
RGImageHandle hdrInput)
{
if (!ctx || !ctx->currentFrame) return;
VkDevice device = ctx->getDevice()->device();
VkImageView hdrView = res.image_view(hdrInput);
if (hdrView == VK_NULL_HANDLE) return;
VkDescriptorSet set = ctx->currentFrame->_frameDescriptors.allocate(device, _inputSetLayout);
DescriptorWriter writer;
writer.write_image(0, hdrView, ctx->getSamplers()->defaultLinear(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
writer.update_set(device, set);
ctx->pipelines->getGraphics("tonemap", _pipeline, _pipelineLayout);
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _pipeline);
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _pipelineLayout, 0, 1, &set, 0, nullptr);
TonemapPush push{_exposure, _mode};
vkCmdPushConstants(cmd, _pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(TonemapPush), &push);
VkExtent2D extent = ctx->getDrawExtent();
VkViewport vp{0.f, 0.f, (float)extent.width, (float)extent.height, 0.f, 1.f};
VkRect2D sc{{0,0}, extent};
vkCmdSetViewport(cmd, 0, 1, &vp);
vkCmdSetScissor(cmd, 0, 1, &sc);
vkCmdDraw(cmd, 3, 1, 0, 0);
}

View File

@@ -0,0 +1,43 @@
#pragma once
#include <core/vk_types.h>
#include <render/renderpass.h>
#include <render/graph/types.h>
class EngineContext;
class RenderGraph;
class RGPassResources;
class TonemapPass final : public IRenderPass
{
public:
void init(EngineContext *context) override;
void cleanup() override;
void execute(VkCommandBuffer) override; // Not used directly; executed via render graph
const char *getName() const override { return "Tonemap"; }
// Register pass in the render graph. Returns the LDR output image handle.
RGImageHandle register_graph(RenderGraph *graph, RGImageHandle hdrInput);
// Runtime parameters
void setExposure(float e) { _exposure = e; }
float exposure() const { return _exposure; }
void setMode(int m) { _mode = m; }
int mode() const { return _mode; }
private:
void draw_tonemap(VkCommandBuffer cmd, EngineContext *ctx, const RGPassResources &res,
RGImageHandle hdrInput);
EngineContext *_context = nullptr;
VkPipeline _pipeline = VK_NULL_HANDLE;
VkPipelineLayout _pipelineLayout = VK_NULL_HANDLE;
VkDescriptorSetLayout _inputSetLayout = VK_NULL_HANDLE;
float _exposure = 1.0f;
int _mode = 1; // default to ACES
DeletionQueue _deletionQueue;
};

View File

@@ -0,0 +1,222 @@
#include "transparent.h"
#include <algorithm>
#include <unordered_set>
#include "ibl_manager.h"
#include "texture_cache.h"
#include "vk_sampler_manager.h"
#include "vk_scene.h"
#include "vk_swapchain.h"
#include "core/engine_context.h"
#include "core/vk_resource.h"
#include "core/vk_device.h"
#include "core/vk_descriptor_manager.h"
#include "core/frame_resources.h"
#include "render/graph/graph.h"
void TransparentPass::init(EngineContext *context)
{
_context = context;
// Create fallback images
const uint32_t pixel = 0x00000000u;
_fallbackIbl2D = _context->getResources()->create_image(&pixel, VkExtent3D{1,1,1},
VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_SAMPLED_BIT);
_fallbackBrdf2D = _context->getResources()->create_image(&pixel, VkExtent3D{1,1,1},
VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_SAMPLED_BIT);
}
void TransparentPass::execute(VkCommandBuffer)
{
// Executed through render graph.
}
void TransparentPass::register_graph(RenderGraph *graph, RGImageHandle drawHandle, RGImageHandle depthHandle)
{
if (!graph || !drawHandle.valid() || !depthHandle.valid()) return;
graph->add_pass(
"Transparent",
RGPassType::Graphics,
[drawHandle, depthHandle](RGPassBuilder &builder, EngineContext *ctx) {
// Draw transparent to the HDR target with depth testing against the existing depth buffer.
builder.write_color(drawHandle);
builder.write_depth(depthHandle, false /*load existing depth*/);
// Register external buffers used by draws
if (ctx)
{
const DrawContext &dc = ctx->getMainDrawContext();
std::unordered_set<VkBuffer> indexSet;
std::unordered_set<VkBuffer> vertexSet;
auto collect = [&](const std::vector<RenderObject> &v) {
for (const auto &r: v)
{
if (r.indexBuffer) indexSet.insert(r.indexBuffer);
if (r.vertexBuffer) vertexSet.insert(r.vertexBuffer);
}
};
collect(dc.TransparentSurfaces);
for (VkBuffer b: indexSet) builder.read_buffer(b, RGBufferUsage::IndexRead, 0, "trans.index");
for (VkBuffer b: vertexSet) builder.read_buffer(b, RGBufferUsage::StorageRead, 0, "trans.vertex");
}
},
[this, drawHandle, depthHandle](VkCommandBuffer cmd, const RGPassResources &res, EngineContext *ctx) {
draw_transparent(cmd, ctx, res, drawHandle, depthHandle);
}
);
}
void TransparentPass::draw_transparent(VkCommandBuffer cmd,
EngineContext *context,
const RGPassResources &resources,
RGImageHandle /*drawHandle*/,
RGImageHandle /*depthHandle*/) const
{
EngineContext *ctxLocal = context ? context : _context;
if (!ctxLocal || !ctxLocal->currentFrame) return;
ResourceManager *resourceManager = ctxLocal->getResources();
DeviceManager *deviceManager = ctxLocal->getDevice();
DescriptorManager *descriptorLayouts = ctxLocal->getDescriptorLayouts();
if (!resourceManager || !deviceManager || !descriptorLayouts) return;
const auto &dc = ctxLocal->getMainDrawContext();
const auto &sceneData = ctxLocal->getSceneData();
// Prepare per-frame scene UBO
AllocatedBuffer gpuSceneDataBuffer = resourceManager->create_buffer(
sizeof(GPUSceneData), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VMA_MEMORY_USAGE_CPU_TO_GPU);
ctxLocal->currentFrame->_deletionQueue.push_function([resourceManager, gpuSceneDataBuffer]() {
resourceManager->destroy_buffer(gpuSceneDataBuffer);
});
VmaAllocationInfo allocInfo{};
vmaGetAllocationInfo(deviceManager->allocator(), gpuSceneDataBuffer.allocation, &allocInfo);
auto *sceneUniformData = static_cast<GPUSceneData *>(allocInfo.pMappedData);
*sceneUniformData = sceneData;
vmaFlushAllocation(deviceManager->allocator(), gpuSceneDataBuffer.allocation, 0, sizeof(GPUSceneData));
VkDescriptorSet globalDescriptor = ctxLocal->currentFrame->_frameDescriptors.allocate(
deviceManager->device(), descriptorLayouts->gpuSceneDataLayout());
DescriptorWriter writer;
writer.write_buffer(0, gpuSceneDataBuffer.buffer, sizeof(GPUSceneData), 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
writer.update_set(deviceManager->device(), globalDescriptor);
// Build IBL descriptor set (set=3) once for this pass
VkDescriptorSet iblSet = VK_NULL_HANDLE;
VkDescriptorSetLayout iblLayout = ctxLocal->ibl ? ctxLocal->ibl->descriptorLayout() : VK_NULL_HANDLE;
VkImageView specView = VK_NULL_HANDLE, brdfView = VK_NULL_HANDLE;
VkBuffer shBuf = VK_NULL_HANDLE; VkDeviceSize shSize = sizeof(glm::vec4)*9;
if (iblLayout)
{
// Fallbacks: use black if any missing
specView = (ctxLocal->ibl && ctxLocal->ibl->specular().imageView) ? ctxLocal->ibl->specular().imageView
: _fallbackIbl2D.imageView;
brdfView = (ctxLocal->ibl && ctxLocal->ibl->brdf().imageView) ? ctxLocal->ibl->brdf().imageView
: _fallbackBrdf2D.imageView;
if (ctxLocal->ibl && ctxLocal->ibl->hasSH()) shBuf = ctxLocal->ibl->shBuffer().buffer;
// If SH missing, allocate zero UBO for this frame
AllocatedBuffer shZero{};
if (shBuf == VK_NULL_HANDLE)
{
shZero = resourceManager->create_buffer(shSize, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VMA_MEMORY_USAGE_CPU_TO_GPU);
std::memset(shZero.info.pMappedData, 0, shSize);
vmaFlushAllocation(deviceManager->allocator(), shZero.allocation, 0, shSize);
shBuf = shZero.buffer;
ctxLocal->currentFrame->_deletionQueue.push_function([resourceManager, shZero]() { resourceManager->destroy_buffer(shZero); });
}
iblSet = ctxLocal->currentFrame->_frameDescriptors.allocate(deviceManager->device(), iblLayout);
DescriptorWriter iw;
iw.write_image(0, specView, ctxLocal->getSamplers()->defaultLinear(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
iw.write_image(1, brdfView, ctxLocal->getSamplers()->defaultLinear(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
iw.write_buffer(2, shBuf, shSize, 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
iw.update_set(deviceManager->device(), iblSet);
}
// Sort transparent back-to-front using camera-space depth.
// We approximate object depth by transforming the mesh bounds origin.
// For better results consider using per-object center or per-draw depth range.
std::vector<const RenderObject *> draws;
draws.reserve(dc.TransparentSurfaces.size());
for (const auto &r: dc.TransparentSurfaces) draws.push_back(&r);
auto view = sceneData.view; // world -> view
auto depthOf = [&](const RenderObject *r) {
glm::vec4 c = r->transform * glm::vec4(r->bounds.origin, 1.f);
float z = (view * c).z;
return -z; // positive depth; larger = further
};
std::sort(draws.begin(), draws.end(), [&](const RenderObject *A, const RenderObject *B) {
return depthOf(A) > depthOf(B); // far to near
});
VkExtent2D extent = ctxLocal->getDrawExtent();
VkViewport viewport{0.f, 0.f, (float) extent.width, (float) extent.height, 0.f, 1.f};
vkCmdSetViewport(cmd, 0, 1, &viewport);
VkRect2D scissor{{0, 0}, extent};
vkCmdSetScissor(cmd, 0, 1, &scissor);
MaterialPipeline *lastPipeline = nullptr;
MaterialInstance *lastMaterial = nullptr;
VkBuffer lastIndexBuffer = VK_NULL_HANDLE;
auto draw = [&](const RenderObject &r) {
if (r.material != lastMaterial)
{
lastMaterial = r.material;
if (r.material->pipeline != lastPipeline)
{
lastPipeline = r.material->pipeline;
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, r.material->pipeline->pipeline);
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, r.material->pipeline->layout, 0, 1,
&globalDescriptor, 0, nullptr);
if (iblSet)
{
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, r.material->pipeline->layout, 3, 1,
&iblSet, 0, nullptr);
}
}
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, r.material->pipeline->layout, 1, 1,
&r.material->materialSet, 0, nullptr);
if (ctxLocal->textures)
{
ctxLocal->textures->markSetUsed(r.material->materialSet, ctxLocal->frameIndex);
}
}
if (r.indexBuffer != lastIndexBuffer)
{
lastIndexBuffer = r.indexBuffer;
vkCmdBindIndexBuffer(cmd, r.indexBuffer, 0, VK_INDEX_TYPE_UINT32);
}
GPUDrawPushConstants push{};
push.worldMatrix = r.transform;
push.vertexBuffer = r.vertexBufferAddress;
push.objectID = r.objectID;
vkCmdPushConstants(cmd, r.material->pipeline->layout,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT,
0, sizeof(GPUDrawPushConstants), &push);
vkCmdDrawIndexed(cmd, r.indexCount, 1, r.firstIndex, 0, 0);
if (ctxLocal->stats)
{
ctxLocal->stats->drawcall_count++;
ctxLocal->stats->triangle_count += r.indexCount / 3;
}
};
for (auto *pObj: draws) draw(*pObj);
}
void TransparentPass::cleanup()
{
if (_context && _context->getResources())
{
if (_fallbackIbl2D.image) _context->getResources()->destroy_image(_fallbackIbl2D);
if (_fallbackBrdf2D.image) _context->getResources()->destroy_image(_fallbackBrdf2D);
}
fmt::print("TransparentPass::cleanup()\n");
}

View File

@@ -0,0 +1,30 @@
#pragma once
#include "render/renderpass.h"
#include "render/graph/types.h"
class TransparentPass : public IRenderPass
{
public:
void init(EngineContext *context) override;
void execute(VkCommandBuffer cmd) override;
void cleanup() override;
const char *getName() const override { return "Transparent"; }
// RenderGraph wiring
void register_graph(class RenderGraph *graph,
RGImageHandle drawHandle,
RGImageHandle depthHandle);
private:
void draw_transparent(VkCommandBuffer cmd,
EngineContext *context,
const class RGPassResources &resources,
RGImageHandle drawHandle,
RGImageHandle depthHandle) const;
EngineContext *_context{};
mutable AllocatedImage _fallbackIbl2D{}; // 1x1 black (created in init)
mutable AllocatedImage _fallbackBrdf2D{}; // 1x1 black RG
};