ADD: planet quadtree stabilized

This commit is contained in:
2025-12-29 17:33:11 +09:00
parent dd97019264
commit 56e10d9983
3 changed files with 341 additions and 63 deletions

View File

@@ -7,29 +7,52 @@ Lightweight render graph that builds a perframe DAG from pass declarations, c
- Centralize synchronization and image layout transitions across passes. - Centralize synchronization and image layout transitions across passes.
- Make passes declarative: author declares reads/writes; the graph inserts barriers and begins/ends rendering. - Make passes declarative: author declares reads/writes; the graph inserts barriers and begins/ends rendering.
- Keep existing pass classes (`IRenderPass`) while migrating execution to the graph. - Keep existing pass classes (`IRenderPass`) while migrating execution to the graph.
- Provide runtime profiling and debugging capabilities for pass execution.
### HighLevel Flow ### HighLevel Flow
- Engine creates the graph each frame and imports swapchain/GBuffer images: `src/core/engine.cpp:303`. - Engine creates the graph each frame and imports swapchain/GBuffer images: `src/core/engine.cpp`.
- Each pass registers its work by calling `register_graph(graph, ...)` and declaring resources via a builder. - Each pass registers its work by calling `register_graph(graph, ...)` and declaring resources via a builder.
- The graph appends a present chain (copy HDR `drawImage` → swapchain, then transition to `PRESENT`), optionally inserting ImGui before present. - The graph appends a present chain (copy HDR `drawImage` → swapchain, then transition to `PRESENT`), optionally inserting ImGui before present.
- `compile()` topologically sorts passes by data dependencies (read/write) and computes perpass barriers. - `compile()` topologically sorts passes by data dependencies (read/write hazards: RAW/WAW/WAR) and computes perpass barriers using `VkDependencyInfo` with `Vk*MemoryBarrier2`.
- `execute(cmd)` emits barriers, begins dynamic rendering if attachments were declared, calls the pass record lambda, and ends rendering. - `execute(cmd)` creates timestamp query pools, emits barriers, begins dynamic rendering if attachments were declared, calls the pass record lambda, ends rendering, and records GPU/CPU timings.
- `resolve_timings()` retrieves GPU timestamp results after the fence is signaled, converting them to milliseconds.
### Core API ### Core API
**Lifecycle:**
- `RenderGraph::init(ctx)` — Initialize with engine context. See `src/render/graph/graph.cpp:28`.
- `RenderGraph::clear()` — Clear all passes and reset resources. See `src/render/graph/graph.cpp:34`.
- `RenderGraph::shutdown()` — Destroy GPU resources (query pools) before device shutdown. See `src/render/graph/graph.cpp:40`.
**Pass Registration:**
- `RenderGraph::add_pass(name, RGPassType type, BuildCallback build, RecordCallback record)` - `RenderGraph::add_pass(name, RGPassType type, BuildCallback build, RecordCallback record)`
- Declare image/buffer accesses and attachments inside `build` using `RGPassBuilder`. - Declare image/buffer accesses and attachments inside `build` using `RGPassBuilder`.
- Do your actual rendering/copies in `record` using resolved Vulkan objects from `RGPassResources`. - Do your actual rendering/copies in `record` using resolved Vulkan objects from `RGPassResources`.
- See: `src/render/graph/graph.h:36`, `src/render/graph/graph.cpp:51`. - See: `src/render/graph/graph.h:42`, `src/render/graph/graph.cpp:91`.
- Legacy form: `add_pass(name, type, record)` for passes with no resource declarations. See `src/render/graph/graph.cpp:117`.
- `RenderGraph::compile()` → builds ordering and perpass `Vk*MemoryBarrier2` lists. See `src/render/graph/graph.cpp:83`. **Resource Creation:**
- `import_image(desc)` / `import_buffer(desc)` — Import externally owned resources (deduplicated by VkImage/VkBuffer handle).
- `create_image(desc)` / `create_buffer(desc)` — Create transient resources (destroyed at end of frame via deletion queue).
- `create_depth_image(name, extent, format=D32_SFLOAT)` — Convenience helper for depth-only images with depth attachment + sampled usage. See `src/render/graph/graph.cpp:67`.
- `RenderGraph::execute(cmd)` → emits barriers and dynamic rendering begin/end. See `src/render/graph/graph.cpp:592`. **Compilation and Execution:**
- `RenderGraph::compile()` — Build topological ordering (Kahn's algorithm) and perpass `VkImageMemoryBarrier2` / `VkBufferMemoryBarrier2` lists. Returns false on error. See `src/render/graph/graph.cpp:123`.
- `RenderGraph::execute(cmd)` — Creates timestamp query pool, emits barriers via `vkCmdPipelineBarrier2`, begins dynamic rendering if attachments exist, invokes record callbacks, ends rendering, and writes GPU timestamps. See `src/render/graph/graph.cpp:874`.
- `RenderGraph::resolve_timings()` — Fetch GPU timestamp results after fence wait and convert to milliseconds. Must be called before next `execute()`. See `src/render/graph/graph.cpp:1314`.
- Import helpers for engine images: `import_draw_image()`, `import_depth_image()`, `import_gbuffer_*()`, `import_swapchain_image(index)`. See `src/render/graph/graph.cpp:740`. **Import Helpers:**
- `import_draw_image()`, `import_depth_image()`, `import_gbuffer_position()`, `import_gbuffer_normal()`, `import_gbuffer_albedo()`, `import_gbuffer_extra()`, `import_id_buffer()`, `import_swapchain_image(index)` — Convenience wrappers for engine-owned images. See `src/render/graph/graph.cpp:11471312`.
- Present chain: `add_present_chain(draw, swapchain, appendExtra)` inserts Copy→Present passes and lets you inject extra passes (e.g., ImGui) in between. See `src/render/graph/graph.cpp:705`. **Present Chain:**
- `add_present_chain(draw, swapchain, appendExtra)` — Inserts `PresentLetterbox` pass (blit draw→swapchain with letterboxing) and `PreparePresent` pass (layout transition to `PRESENT_SRC_KHR`). Optional `appendExtra` callback injects passes (e.g., ImGui) in between. See `src/render/graph/graph.cpp:1043`.
**Debug and Profiling:**
- `pass_count()`, `pass_name(i)`, `pass_enabled(i)`, `set_pass_enabled(i, enabled)` — Runtime pass enable/disable. See `src/render/graph/graph.h:105108`.
- `debug_get_passes(out)` — Retrieve pass metadata including GPU/CPU timings, resource access counts, attachment info. See `src/render/graph/graph.cpp:1163`.
- `debug_get_images(out)` — Retrieve image metadata (imported/transient, format, extent, usage, lifetime). See `src/render/graph/graph.cpp:1186`.
- `debug_get_buffers(out)` — Retrieve buffer metadata. See `src/render/graph/graph.cpp:1207`.
### Declaring a Pass ### Declaring a Pass
@@ -65,63 +88,155 @@ void MyPass::register_graph(RenderGraph* graph,
### Builder Reference (`RGPassBuilder`) ### Builder Reference (`RGPassBuilder`)
- Images Passed to the `BuildCallback` to declare resource accesses and attachments. See `src/render/graph/builder.h:40`.
- `read(RGImageHandle, RGImageUsage)` → sample/read usage for this pass.
- `write(RGImageHandle, RGImageUsage)` → write usage (compute/storage/transfer).
- `write_color(RGImageHandle, bool clearOnLoad=false, VkClearValue clear={})` → declares a color attachment.
- `write_depth(RGImageHandle, bool clearOnLoad=false, VkClearValue clear={})` → declares a depth attachment.
- Buffers **Image Access:**
- `read_buffer(RGBufferHandle, RGBufferUsage)` / `write_buffer(RGBufferHandle, RGBufferUsage)`. - `read(RGImageHandle, RGImageUsage)` — Declare sampled/read usage (e.g., `SampledFragment`, `TransferSrc`). See `src/render/graph/builder.cpp:20`.
- Convenience import: `read_buffer(VkBuffer, RGBufferUsage, size, name)` and `write_buffer(VkBuffer, ...)` dedup by raw handle. - `write(RGImageHandle, RGImageUsage)` — Declare write usage (e.g., `ComputeWrite`, `TransferDst`). See `src/render/graph/builder.cpp:25`.
- `write_color(RGImageHandle, bool clearOnLoad=false, VkClearValue clear={})` — Declare color attachment with optional clear. Sets usage to `ColorAttachment` and `store=true` by default. See `src/render/graph/builder.cpp:30`.
- `write_depth(RGImageHandle, bool clearOnLoad=false, VkClearValue clear={})` — Declare depth attachment with optional clear. See `src/render/graph/builder.cpp:40`.
See `src/render/graph/builder.h:39` and impl in `src/render/graph/builder.cpp:20`. **Buffer Access:**
- `read_buffer(RGBufferHandle, RGBufferUsage)` — Declare buffer read (e.g., `VertexRead`, `IndexRead`, `UniformRead`, `StorageRead`). See `src/render/graph/builder.cpp:50`.
- `write_buffer(RGBufferHandle, RGBufferUsage)` — Declare buffer write (e.g., `StorageReadWrite`, `TransferDst`). See `src/render/graph/builder.cpp:55`.
- Convenience overloads: `read_buffer(VkBuffer, RGBufferUsage, size, name)` and `write_buffer(VkBuffer, ...)` automatically import and deduplicate by raw `VkBuffer` handle. See `src/render/graph/builder.cpp:60,70`.
**Resource Resolution (`RGPassResources`):**
Used inside the `RecordCallback` to fetch resolved Vulkan objects. See `src/render/graph/builder.h:22`.
- `image(RGImageHandle)` → `VkImage`
- `image_view(RGImageHandle)` → `VkImageView`
- `buffer(RGBufferHandle)` → `VkBuffer`
### Resource Model (`RGResourceRegistry`) ### Resource Model (`RGResourceRegistry`)
- Imported vs transient resources are tracked uniformly with lifetime indices (`firstUse/lastUse`). Manages both imported (externally owned) and transient (graph-owned) resources. See `src/render/graph/resources.h:52`.
- Imports are deduplicated by `VkImage`/`VkBuffer` and keep initial layout/stage/access as the starting state.
- Transients are created via `ResourceManager` and autodestroyed at end of frame using the frame deletion queue. **Imported Resources:**
- See `src/render/graph/resources.h:11` and `src/render/graph/resources.cpp:1`. - Deduplicated by raw Vulkan handle (`VkImage`/`VkBuffer`) using hash maps (`_imageLookup`/`_bufferLookup`). See `src/render/graph/resources.cpp`.
- Initial layout/stage/access preserved from `RGImportedImageDesc`/`RGImportedBufferDesc`.
- Ownership remains external; graph does not destroy these resources.
**Transient Resources:**
- Created via `ResourceManager` (`AllocatedImage`/`AllocatedBuffer`) with VMA allocations. See `src/render/graph/resources.cpp`.
- Automatically destroyed at end of frame via frame deletion queue.
- Usage flags must cover all declared usages (validated during `compile()`).
**Lifetime Tracking:**
- `firstUse` and `lastUse` indices computed during `compile()` (see `src/render/graph/graph.cpp:854869`).
- Used for debug visualization and future aliasing/pooling optimizations.
**Records (`RGImageRecord`/`RGBufferRecord`):**
Unified representation storing `VkImage`/`VkBuffer`, `VkImageView`, format, extent, initial state, and allocation info. See `src/render/graph/resources.h:11,34`.
### Synchronization and Layouts ### Synchronization and Layouts
- For each pass, `compile()` compares previous state with desired usage and, if needed, adds a prepass barrier: **Barrier Generation (see `src/render/graph/graph.cpp:232851`):**
- Images: `VkImageMemoryBarrier2` with stage/access/layout derived from `RGImageUsage`.
- Buffers: `VkBufferMemoryBarrier2` with stage/access derived from `RGBufferUsage`.
- Initial state comes from the imported descriptor; if unknown, buffers default to `TOP_OF_PIPE`.
- Format/usage checks:
- Warns if binding a depth format as color (and viceversa).
- Warns if a transient resource is used with flags it wasnt created with.
Image usage → layout/stage examples (subset): For each enabled pass, `compile()` tracks per-resource state (`ImageState`/`BufferState`) and inserts barriers when hazards are detected:
- `SampledFragment` → `SHADER_READ_ONLY_OPTIMAL`, `FRAGMENT_SHADER`. **Image Barriers (`VkImageMemoryBarrier2`):**
- `ColorAttachment` → `COLOR_ATTACHMENT_OPTIMAL`, `COLOR_ATTACHMENT_OUTPUT` (read|write). - Triggered by: layout change, prior write before read/write (RAW/WAW), prior reads before write (WAR).
- `DepthAttachment` → `DEPTH_ATTACHMENT_OPTIMAL`, `EARLY|LATE_FRAGMENT_TESTS`. - Stage/access/layout derived from `RGImageUsage` via `usage_info_image()` (see `src/render/graph/graph.cpp:313365`).
- `TransferDst` → `TRANSFER_DST_OPTIMAL`, `TRANSFER`. - Aspect determined by usage and format (depth formats get `DEPTH_BIT`, others `COLOR_BIT`).
- `Present` → `PRESENT_SRC_KHR`, `BOTTOM_OF_PIPE`. - Initial state from `RGImportedImageDesc::currentLayout/currentStage/currentAccess`; if unknown (layout ≠ UNDEFINED but stage=NONE), conservatively assumes `ALL_COMMANDS + MEMORY_READ|WRITE`.
Buffer usage → stage/access examples: **Buffer Barriers (`VkBufferMemoryBarrier2`):**
- Triggered by: prior write before read/write, prior reads before write.
- Stage/access derived from `RGBufferUsage` via `usage_info_buffer()` (see `src/render/graph/graph.cpp:367411`).
- Size: exact size for transients, `VK_WHOLE_SIZE` for imports (to avoid validation errors).
- `IndexRead` → `INDEX_INPUT`, `INDEX_READ`. **Usage Priority and Conflict Resolution:**
- `VertexRead` → `VERTEX_INPUT`, `VERTEX_ATTRIBUTE_READ`. When a pass declares multiple conflicting usages for the same resource (e.g., both `SampledFragment` and `ColorAttachment`), the graph selects the highest-priority usage for layout determination (see `image_usage_priority()` at `src/render/graph/graph.cpp:499`). Stages and access masks are unioned. Warns if layout mismatch detected.
- `UniformRead` → `ALL_GRAPHICS|COMPUTE`, `UNIFORM_READ`.
- `StorageReadWrite` → `COMPUTE|FRAGMENT`, `SHADER_STORAGE_READ|WRITE`. **Image Usage → Layout/Stage/Access Mapping:**
See `usage_info_image()` at `src/render/graph/graph.cpp:313`.
| RGImageUsage | Layout | Stage | Access |
|---|---|---|---|
| `SampledFragment` | `SHADER_READ_ONLY_OPTIMAL` | `FRAGMENT_SHADER` | `SHADER_SAMPLED_READ` |
| `SampledCompute` | `SHADER_READ_ONLY_OPTIMAL` | `COMPUTE_SHADER` | `SHADER_SAMPLED_READ` |
| `TransferSrc` | `TRANSFER_SRC_OPTIMAL` | `TRANSFER` | `TRANSFER_READ` |
| `TransferDst` | `TRANSFER_DST_OPTIMAL` | `TRANSFER` | `TRANSFER_WRITE` |
| `ColorAttachment` | `COLOR_ATTACHMENT_OPTIMAL` | `COLOR_ATTACHMENT_OUTPUT` | `COLOR_ATTACHMENT_READ\|WRITE` |
| `DepthAttachment` | `DEPTH_ATTACHMENT_OPTIMAL` | `EARLY_FRAGMENT_TESTS\|LATE_FRAGMENT_TESTS` | `DEPTH_STENCIL_ATTACHMENT_READ\|WRITE` |
| `ComputeWrite` | `GENERAL` | `COMPUTE_SHADER` | `SHADER_STORAGE_READ\|WRITE` |
| `Present` | `PRESENT_SRC_KHR` | `BOTTOM_OF_PIPE` | `MEMORY_READ` |
**Buffer Usage → Stage/Access Mapping:**
See `usage_info_buffer()` at `src/render/graph/graph.cpp:367`.
| RGBufferUsage | Stage | Access |
|---|---|---|
| `TransferSrc` | `TRANSFER` | `TRANSFER_READ` |
| `TransferDst` | `TRANSFER` | `TRANSFER_WRITE` |
| `VertexRead` | `VERTEX_INPUT` | `VERTEX_ATTRIBUTE_READ` |
| `IndexRead` | `INDEX_INPUT` | `INDEX_READ` |
| `UniformRead` | `ALL_GRAPHICS\|COMPUTE_SHADER` | `UNIFORM_READ` |
| `StorageRead` | `COMPUTE_SHADER\|ALL_GRAPHICS` | `SHADER_STORAGE_READ` |
| `StorageReadWrite` | `COMPUTE_SHADER\|ALL_GRAPHICS` | `SHADER_STORAGE_READ\|WRITE` |
| `IndirectArgs` | `DRAW_INDIRECT` | `INDIRECT_COMMAND_READ` |
**Validation Warnings:**
- Depth-format image declared as color attachment (or vice versa). See `src/render/graph/graph.cpp:645657`.
- Transient resource used without required usage flags. See `src/render/graph/graph.cpp:659667` (images), `818826` (buffers).
- Multiple conflicting layouts in single pass. See `src/render/graph/graph.cpp:536543`.
### BuiltIn Pass Wiring (Current) ### BuiltIn Pass Wiring (Current)
- Resource uploads (if any) → Background (compute) → Geometry (GBuffer) → Lighting (deferred) → SSR → Tonemap+Bloom → FXAA → Transparent → CopyToSwapchain → ImGui → PreparePresent. - Resource uploads (if any) → Background (compute) → Geometry (GBuffer) → Lighting (deferred) → SSR → Tonemap+Bloom → FXAA → Transparent → CopyToSwapchain → ImGui → PreparePresent.
- See registrations in `src/core/engine.cpp`. - See registrations in `src/core/engine.cpp`.
### Topological Sorting and Scheduling
**Dependency Graph Construction (see `src/render/graph/graph.cpp:127231`):**
- Reads/writes create directed edges: `writer → reader` (RAW), `writer → writer` (WAW), `reader → writer` (WAR).
- Disabled passes are skipped during edge construction but remain in the pass list.
- Kahn's algorithm produces a linear execution order respecting all dependencies.
- If cycle detected (topological sort fails), falls back to insertion order but still computes barriers.
**Execution Order:**
Passes execute in sorted order (or insertion order if cycle). Only enabled passes run; disabled passes are skipped during `execute()`. See `src/render/graph/graph.cpp:895`.
### Dynamic Rendering Setup
**Render Area Calculation (see `src/render/graph/graph.cpp:9361000`):**
- Chooses min extent across all color/depth attachments.
- Falls back to `EngineContext::drawExtent` if no attachments.
- Warns if color attachments have mismatched extents.
**Attachment Construction:**
- Color attachments: `VkRenderingAttachmentInfo` with `clearOnLoad` → `LOAD_OP_CLEAR` / `LOAD_OP_LOAD`, `store` → `STORE_OP_STORE` / `STORE_OP_DONT_CARE`.
- Depth attachment: similar logic; `clearValue.depthStencil` used if `clearOnLoad=true`.
- Layout forced to `COLOR_ATTACHMENT_OPTIMAL` or `DEPTH_ATTACHMENT_OPTIMAL`.
See `src/render/graph/graph.cpp:9271012`.
### Profiling and Timing
**GPU Timing (Timestamps):**
- Per-frame `VkQueryPool` with 2 queries per pass (begin/end). Created in `execute()`, destroyed in `resolve_timings()` or next `execute()`.
- `vkCmdWriteTimestamp2()` at `ALL_COMMANDS_BIT` stage before/after pass recording (see `src/render/graph/graph.cpp:919923`, `10281032`).
- `resolve_timings()` fetches results with `VK_QUERY_RESULT_WAIT_BIT`, converts ticks to milliseconds using `timestampPeriod`. See `src/render/graph/graph.cpp:13141355`.
**CPU Timing:**
- `std::chrono::high_resolution_clock` measures command recording duration (`cpuStart`/`cpuEnd`). See `src/render/graph/graph.cpp:924`, `1026`.
- Stored in `_lastCpuMillis` vector; accessible via `debug_get_passes()`.
**Debug Structures:**
- `RGDebugPassInfo`: name, type, enabled, resource counts, attachment info, `gpuMillis`, `cpuMillis`. See `src/render/graph/graph.h:66`.
- `RGDebugImageInfo`: id, name, imported, format, extent, usage, lifetime. See `src/render/graph/graph.h:83`.
- `RGDebugBufferInfo`: id, name, imported, size, usage, lifetime. See `src/render/graph/graph.h:94`.
### Notes & Limits ### Notes & Limits
- No aliasing or transient pooling yet; images created via `create_*` are released endofframe. - **No aliasing or transient pooling**: Transient images/buffers created via `create_*` are released endofframe via frame deletion queue.
- Graph scheduling uses a topological order by data dependency; it does not parallelize across queues. - **Single-queue execution**: Topological order is linear; no multi-queue parallelization.
- Load/store control for attachments is minimal (`clearOnLoad`, `store` on `RGAttachmentInfo`). - **Minimal load/store control**: Only `clearOnLoad` and `store` flags on `RGAttachmentInfo`; no resolve or stencil control.
- Render area is the min of all declared attachment extents and `EngineContext::drawExtent`. - **No mid-pass barriers**: Conflicting usages within a single pass cannot be synchronized (warns but proceeds with unioned stages/access).
- **No automatic resource aliasing**: Future work could reuse transient allocations based on lifetime non-overlap.
### Debugging ### Debugging
- Each pass is wrapped with a debug label (`RG: <name>`). - **Per-pass debug labels**: `vkdebug::cmd_begin_label(cmd, "RG: <name>")` wraps each pass (see `src/render/graph/graph.cpp:903906`, `10351038`).
- Compile prints warnings for suspicious usages or format mismatches. - **Compile-time validation warnings**: Printed via `fmt::println` for format mismatches, missing usage flags, layout conflicts.
- **Runtime introspection**: Use `debug_get_*` APIs to export pass/image/buffer metadata for visualization/debugging tools.

View File

@@ -22,15 +22,22 @@ auto chairPath = assets->modelPath("models/chair.glb");
- Paths - Paths
- `std::string shaderPath(std::string_view)` - `std::string shaderPath(std::string_view)`
- `std::string assetPath(std::string_view)` / `modelPath(std::string_view)` - `std::string assetPath(std::string_view)` / `modelPath(std::string_view)`
- `const AssetPaths& paths() const` / `void setPaths(const AssetPaths &p)` — get/set asset paths
- glTF - glTF
- `std::optional<std::shared_ptr<LoadedGLTF>> loadGLTF(std::string_view nameOrPath)` — cached by canonical absolute path - `std::optional<std::shared_ptr<LoadedGLTF>> loadGLTF(std::string_view nameOrPath)` — cached by canonical absolute path
- `std::optional<std::shared_ptr<LoadedGLTF>> loadGLTF(std::string_view nameOrPath, const GLTFLoadCallbacks *cb)` — with custom callbacks
- `size_t prefetchGLTFTextures(std::string_view nameOrPath)` — schedule texture loads ahead of time
- `GLTFTexturePrefetchResult prefetchGLTFTexturesWithHandles(std::string_view nameOrPath)` — returns handles for tracking
- Meshes - Meshes
- `std::shared_ptr<MeshAsset> createMesh(const MeshCreateInfo &info)` - `std::shared_ptr<MeshAsset> createMesh(const MeshCreateInfo &info)`
- `std::shared_ptr<MeshAsset> createMesh(const std::string &name, std::span<Vertex> v, std::span<uint32_t> i, std::shared_ptr<GLTFMaterial> material = {})` - `std::shared_ptr<MeshAsset> createMesh(const std::string &name, std::span<Vertex> v, std::span<uint32_t> i, std::shared_ptr<GLTFMaterial> material = {}, bool build_bvh = true)`
- `std::shared_ptr<MeshAsset> getMesh(const std::string &name) const` - `std::shared_ptr<MeshAsset> getMesh(const std::string &name) const`
- `std::shared_ptr<MeshAsset> getPrimitive(std::string_view name) const` (returns existing default primitives if created) - `std::shared_ptr<MeshAsset> getPrimitive(std::string_view name) const` returns existing default primitives if created
- `bool removeMesh(const std::string &name)` - `bool removeMesh(const std::string &name)`
- `bool removeMeshDeferred(const std::string &name, DeletionQueue &dq)` — deferred cleanup via deletion queue
- `void cleanup()` — releases meshes, material buffers, and any images owned by the manager - `void cleanup()` — releases meshes, material buffers, and any images owned by the manager
- Materials
- `std::shared_ptr<GLTFMaterial> createMaterialFromConstants(const std::string &name, const GLTFMetallic_Roughness::MaterialConstants &constants, MaterialPass pass = MaterialPass::MainColor)` — create PBR material from constants using engine default textures
### Mesh Creation Model ### Mesh Creation Model
@@ -41,15 +48,19 @@ struct AssetManager::MaterialOptions {
std::string albedoPath; // resolved through AssetManager std::string albedoPath; // resolved through AssetManager
std::string metalRoughPath; // resolved through AssetManager std::string metalRoughPath; // resolved through AssetManager
std::string normalPath; // resolved through AssetManager (tangent-space normal) std::string normalPath; // resolved through AssetManager (tangent-space normal)
std::string occlusionPath; // resolved through AssetManager (ambient occlusion)
std::string emissivePath; // resolved through AssetManager (emissive/glow)
bool albedoSRGB = true; // VK_FORMAT_R8G8B8A8_SRGB when true bool albedoSRGB = true; // VK_FORMAT_R8G8B8A8_SRGB when true
bool metalRoughSRGB = false; // VK_FORMAT_R8G8B8A8_UNORM when false bool metalRoughSRGB = false; // VK_FORMAT_R8G8B8A8_UNORM when false
bool normalSRGB = false; // normal maps should be UNORM bool normalSRGB = false; // normal maps should be UNORM
bool occlusionSRGB = false; // occlusion should be UNORM
bool emissiveSRGB = true; // emissive is typically sRGB
GLTFMetallic_Roughness::MaterialConstants constants{}; // extra[0].x as normalScale GLTFMetallic_Roughness::MaterialConstants constants{}; // extra[0].x as normalScale
MaterialPass pass = MaterialPass::MainColor; // or Transparent MaterialPass pass = MaterialPass::MainColor; // or Transparent
}; };
struct AssetManager::MeshGeometryDesc { struct AssetManager::MeshGeometryDesc {
enum class Type { Provided, Cube, Sphere }; enum class Type { Provided, Cube, Sphere, Plane, Capsule };
Type type = Type::Provided; Type type = Type::Provided;
std::span<Vertex> vertices{}; // when Provided std::span<Vertex> vertices{}; // when Provided
std::span<uint32_t> indices{}; // when Provided std::span<uint32_t> indices{}; // when Provided
@@ -65,8 +76,9 @@ struct AssetManager::MeshMaterialDesc {
struct AssetManager::MeshCreateInfo { struct AssetManager::MeshCreateInfo {
std::string name; // cache key; reused if already created std::string name; // cache key; reused if already created
MeshGeometryDesc geometry; // Provided / Cube / Sphere MeshGeometryDesc geometry; // Provided / Cube / Sphere / Plane / Capsule
MeshMaterialDesc material; // Default or Textured MeshMaterialDesc material; // Default or Textured
std::optional<BoundsType> boundsType; // optional override for collision/picking bounds
}; };
``` ```
@@ -113,9 +125,23 @@ si.material.kind = AssetManager::MeshMaterialDesc::Kind::Default;
auto sphere = ctx->getAssets()->createMesh(si); auto sphere = ctx->getAssets()->createMesh(si);
ctx->scene->addMeshInstance("sphere.instance", sphere, ctx->scene->addMeshInstance("sphere.instance", sphere,
glm::translate(glm::mat4(1.f), glm::vec3(2.f, 0.f, -2.f))); glm::translate(glm::mat4(1.f), glm::vec3(2.f, 0.f, -2.f)));
// Plane primitive
AssetManager::MeshCreateInfo pi{};
pi.name = "groundPlane";
pi.geometry.type = AssetManager::MeshGeometryDesc::Type::Plane;
pi.material.kind = AssetManager::MeshMaterialDesc::Kind::Default;
auto plane = ctx->getAssets()->createMesh(pi);
// Capsule primitive
AssetManager::MeshCreateInfo capi{};
capi.name = "capsuleA";
capi.geometry.type = AssetManager::MeshGeometryDesc::Type::Capsule;
capi.material.kind = AssetManager::MeshMaterialDesc::Kind::Default;
auto capsule = ctx->getAssets()->createMesh(capi);
``` ```
Textured primitive (albedo + metal-rough + normal): Textured primitive (albedo + metal-rough + normal + occlusion + emissive):
```c++ ```c++
AssetManager::MeshCreateInfo ti{}; AssetManager::MeshCreateInfo ti{};
@@ -128,6 +154,8 @@ ti.material.kind = AssetManager::MeshMaterialDesc::Kind::Textured;
ti.material.options.albedoPath = "textures/ground_albedo.png"; // sRGB ti.material.options.albedoPath = "textures/ground_albedo.png"; // sRGB
ti.material.options.metalRoughPath = "textures/ground_mr.png"; // UNORM, G=roughness, B=metallic ti.material.options.metalRoughPath = "textures/ground_mr.png"; // UNORM, G=roughness, B=metallic
ti.material.options.normalPath = "textures/ground_n.png"; // UNORM ti.material.options.normalPath = "textures/ground_n.png"; // UNORM
ti.material.options.occlusionPath = "textures/ground_ao.png"; // UNORM (optional)
ti.material.options.emissivePath = "textures/ground_emit.png"; // sRGB (optional)
ti.material.options.constants.extra[0].x = 1.0f; // normalScale ti.material.options.constants.extra[0].x = 1.0f; // normalScale
// ti.material.options.pass = MaterialPass::Transparent; // optional // ti.material.options.pass = MaterialPass::Transparent; // optional
@@ -136,7 +164,25 @@ glm::mat4 tx = glm::scale(glm::mat4(1.f), glm::vec3(10.f, 1.f, 10.f));
ctx->scene->addMeshInstance("ground.textured", texturedPlane, tx); ctx->scene->addMeshInstance("ground.textured", texturedPlane, tx);
``` ```
Textured cube/sphere via options is analogous — set `geometry.type` to `Cube` or `Sphere` and fill `material.options`. Textured cube/sphere/plane/capsule via options is analogous — set `geometry.type` to `Cube`, `Sphere`, `Plane`, or `Capsule` and fill `material.options`.
Using custom material from constants:
```c++
// Create a material with custom PBR values (using engine default textures)
GLTFMetallic_Roughness::MaterialConstants constants{};
constants.colorFactors = glm::vec4(1.0f, 0.0f, 0.0f, 1.0f); // red
constants.metal_rough_factors = glm::vec4(0.0f, 0.8f, 0.0f, 0.0f); // non-metallic, rough
auto redMaterial = ctx->getAssets()->createMaterialFromConstants(
"red_rough_material",
constants,
MaterialPass::MainColor
);
// Use with custom mesh
auto mesh = ctx->getAssets()->createMesh("custom_mesh", vertices, indices, redMaterial);
```
Runtime glTF spawning: Runtime glTF spawning:
@@ -154,11 +200,74 @@ ctx->scene->addGLTFInstance("chair01", *chair,
ctx->scene->removeGLTFInstance("chair01"); ctx->scene->removeGLTFInstance("chair01");
``` ```
### Texture Prefetching
Queue texture loads for a glTF file ahead of time. This parses the glTF, builds TextureCache keys for referenced images (both external URIs and embedded images in buffers), and issues `TextureCache::request()` calls. Actual uploads happen via the normal per-frame pump.
```c++
// Simple version: returns number of textures scheduled
size_t count = ctx->getAssets()->prefetchGLTFTextures("models/heavy_asset.glb");
// Advanced version: returns handles for tracking progress
auto result = ctx->getAssets()->prefetchGLTFTexturesWithHandles("models/heavy_asset.glb");
fmt::println("Scheduled {} textures", result.scheduled);
// Use result.handles with TextureCache to monitor loading state
```
Texture prefetching is particularly useful when combined with `AsyncAssetLoader` for loading large models in the background.
### Async Asset Loading
The `AsyncAssetLoader` class provides asynchronous glTF loading with worker threads for CPU-bound tasks (file I/O, parsing, mesh/BVH building). GPU uploads are still deferred through ResourceManager and the Render Graph.
```c++
// Access via EngineContext
auto *loader = ctx->async_loader;
// Queue a model to load in the background
auto jobID = loader->load_gltf_async(
"spaceship_01", // scene instance name
"models/spaceship.glb", // model path (resolved via AssetManager)
glm::translate(glm::mat4(1.f), glm::vec3(0, 5, -10)), // transform
true // preload textures
);
// Check progress in your update loop
JobState state;
float progress;
std::string error;
if (loader->get_job_status(jobID, state, progress, &error)) {
if (state == JobState::Completed) {
fmt::println("Model loaded successfully!");
} else if (state == JobState::Failed) {
fmt::println("Failed to load: {}", error);
}
}
// Commit completed jobs to the scene (call once per frame)
loader->pump_main_thread(*ctx->scene);
// Alternative: use WorldVec3 for large-world coordinates
auto jobID2 = loader->load_gltf_async(
"distant_building",
"models/building.glb",
WorldVec3{1000000.0, 0.0, 500000.0}, // world position
glm::quat(1.0f, 0.0f, 0.0f, 0.0f), // rotation
glm::vec3(1.0f), // scale
false // don't preload textures
);
```
The `AsyncAssetLoader` integrates with `TextureCache` to track texture streaming progress. When `preload_textures` is true, the loader will schedule all model textures for loading and track their residency state.
### Notes ### Notes
- Default primitives: The engine creates default Cube/Sphere meshes via `AssetManager` and registers them as dynamic scene instances. - Default primitives: The engine creates default Cube/Sphere/Plane/Capsule meshes via `AssetManager` and registers them as dynamic scene instances.
- Reuse by name: `createMesh("name", ...)` returns the cached mesh if it already exists. Use a unique name or call `removeMesh(name)` to replace. - Reuse by name: `createMesh("name", ...)` returns the cached mesh if it already exists. Use a unique name or call `removeMesh(name)` to replace.
- sRGB/UNORM: Albedo is sRGB by default, metal-rough is UNORM by default. Adjust via `MaterialOptions`. - sRGB/UNORM: Albedo and emissive are sRGB by default, metal-rough/normal/occlusion are UNORM by default. Adjust via `MaterialOptions`.
- Hot reload: Shaders are resolved via `shaderPath()`; pipeline hot reload is handled by the pipeline manager, not the AssetManager. - Hot reload: Shaders are resolved via `shaderPath()`; pipeline hot reload is handled by the pipeline manager, not the AssetManager.
- Normal maps: Supported. If `normalPath` is empty, a flat normal is used. - Normal maps: Supported. If `normalPath` is empty, a flat normal is used.
- Occlusion & Emissive: Supported via `occlusionPath` and `emissivePath` in `MaterialOptions`.
- Tangents: Loaded from glTF when present; otherwise generated. Enable MikkTSpace at configure time with `-DENABLE_MIKKTS=ON`. - Tangents: Loaded from glTF when present; otherwise generated. Enable MikkTSpace at configure time with `-DENABLE_MIKKTS=ON`.
- BVH building: Enabled by default for meshes (`build_bvh = true`). Required for picking and ray-tracing.
- Deferred cleanup: Use `removeMeshDeferred()` when destroying meshes during rendering to avoid destroying resources that are in-flight on the GPU.

View File

@@ -16,11 +16,54 @@ namespace planet
PatchKey key{}; PatchKey key{};
}; };
void compute_patch_visibility_terms(const PatchKey &key,
const glm::dvec3 &patch_center_dir,
double radius_m,
double &out_cos_patch_radius,
double &out_sin_patch_radius,
double &out_bound_radius_m)
{
glm::dvec3 c = patch_center_dir;
const double c_len2 = glm::dot(c, c);
if (!(c_len2 > 0.0))
{
c = glm::dvec3(0.0, 0.0, 1.0);
}
else
{
c *= (1.0 / std::sqrt(c_len2));
}
double u0 = 0.0, u1 = 0.0, v0 = 0.0, v1 = 0.0;
cubesphere_tile_uv_bounds(key.level, key.x, key.y, u0, u1, v0, v1);
// Conservative angular radius: max angle from patch center direction to any corner direction.
double min_dot = 1.0;
min_dot = std::min(min_dot, glm::dot(c, cubesphere_unit_direction(key.face, u0, v0)));
min_dot = std::min(min_dot, glm::dot(c, cubesphere_unit_direction(key.face, u1, v0)));
min_dot = std::min(min_dot, glm::dot(c, cubesphere_unit_direction(key.face, u0, v1)));
min_dot = std::min(min_dot, glm::dot(c, cubesphere_unit_direction(key.face, u1, v1)));
const double cos_a = glm::clamp(min_dot, -1.0, 1.0);
const double sin_a = std::sqrt(glm::max(0.0, 1.0 - cos_a * cos_a));
// Vertex positions are built as (unit_dir - patch_center_dir) * radius (chord length).
const double chord_r = radius_m * std::sqrt(glm::max(0.0, 2.0 - 2.0 * cos_a));
// Skirts extend inward; add a small safety margin so CPU culling stays conservative.
const double skirt_depth = cubesphere_skirt_depth_m(radius_m, key.level);
out_cos_patch_radius = cos_a;
out_sin_patch_radius = sin_a;
out_bound_radius_m = glm::max(1.0, chord_r + skirt_depth);
}
bool is_patch_visible_horizon(const WorldVec3 &body_center_world, bool is_patch_visible_horizon(const WorldVec3 &body_center_world,
double radius_m, double radius_m,
const WorldVec3 &camera_world, const WorldVec3 &camera_world,
const glm::dvec3 &patch_center_dir, const glm::dvec3 &patch_center_dir,
double patch_edge_m) double cos_patch_radius,
double sin_patch_radius)
{ {
const glm::dvec3 w = camera_world - body_center_world; const glm::dvec3 w = camera_world - body_center_world;
const double d = glm::length(w); const double d = glm::length(w);
@@ -36,15 +79,13 @@ namespace planet
const double cos_h = glm::clamp(radius_m / d, 0.0, 1.0); const double cos_h = glm::clamp(radius_m / d, 0.0, 1.0);
const double sin_h = std::sqrt(glm::max(0.0, 1.0 - cos_h * cos_h)); const double sin_h = std::sqrt(glm::max(0.0, 1.0 - cos_h * cos_h));
// Expand horizon by patch angular radius to avoid culling near silhouettes.
const double half_diag_m = patch_edge_m * 0.7071067811865476; // sqrt(2)/2
const double ang = glm::clamp(half_diag_m / radius_m, 0.0, glm::pi<double>());
const double cos_a = std::cos(ang);
const double sin_a = std::sin(ang);
// Visible if theta <= theta_h + ang: // Visible if theta <= theta_h + ang:
// cos(theta) >= cos(theta_h + ang) // cos(theta) >= cos(theta_h + ang)
const double cos_limit = cos_h * cos_a - sin_h * sin_a; const double cos_limit = cos_h * cos_patch_radius - sin_h * sin_patch_radius;
if (!std::isfinite(cos_theta) || !std::isfinite(cos_limit))
{
return true; // fail-safe: avoid catastrophic full culls
}
return cos_theta >= cos_limit; return cos_theta >= cos_limit;
} }
@@ -161,9 +202,22 @@ namespace planet
const double patch_edge_m = cubesphere_patch_edge_m(radius_m, k.level); const double patch_edge_m = cubesphere_patch_edge_m(radius_m, k.level);
const glm::dvec3 patch_dir = cubesphere_patch_center_direction(k.face, k.level, k.x, k.y); const glm::dvec3 patch_dir = cubesphere_patch_center_direction(k.face, k.level, k.x, k.y);
double cos_patch_radius = 1.0;
double sin_patch_radius = 0.0;
double patch_bound_r_m = 1.0;
if (_settings.horizon_cull || _settings.frustum_cull)
{
compute_patch_visibility_terms(k, patch_dir, radius_m, cos_patch_radius, sin_patch_radius, patch_bound_r_m);
}
if (_settings.horizon_cull) if (_settings.horizon_cull)
{ {
if (!is_patch_visible_horizon(body_center_world, radius_m, camera_world, patch_dir, patch_edge_m)) if (!is_patch_visible_horizon(body_center_world,
radius_m,
camera_world,
patch_dir,
cos_patch_radius,
sin_patch_radius))
{ {
_stats.nodes_culled++; _stats.nodes_culled++;
continue; continue;
@@ -176,7 +230,7 @@ namespace planet
if (_settings.frustum_cull) if (_settings.frustum_cull)
{ {
const glm::vec3 patch_center_local = world_to_local(patch_center_world, origin_world); const glm::vec3 patch_center_local = world_to_local(patch_center_world, origin_world);
const float bound_r = static_cast<float>(patch_edge_m * 0.7071067811865476); const float bound_r = static_cast<float>(patch_bound_r_m);
if (!is_patch_visible_frustum(patch_center_local, bound_r, scene_data.viewproj)) if (!is_patch_visible_frustum(patch_center_local, bound_r, scene_data.viewproj))
{ {
_stats.nodes_culled++; _stats.nodes_culled++;