ADD: CSM half-working
This commit is contained in:
@@ -8,7 +8,7 @@ layout(location=0) out vec4 outColor;
|
||||
layout(set=1, binding=0) uniform sampler2D posTex;
|
||||
layout(set=1, binding=1) uniform sampler2D normalTex;
|
||||
layout(set=1, binding=2) uniform sampler2D albedoTex;
|
||||
layout(set=2, binding=0) uniform sampler2D shadowTex;
|
||||
layout(set=2, binding=0) uniform sampler2D shadowTex[MAX_CASCADES];
|
||||
|
||||
const float PI = 3.14159265359;
|
||||
|
||||
@@ -31,7 +31,15 @@ const vec2 POISSON_16[16] = vec2[16](
|
||||
|
||||
float calcShadowVisibility(vec3 worldPos, vec3 N, vec3 L)
|
||||
{
|
||||
vec4 lclip = sceneData.lightViewProj * vec4(worldPos, 1.0);
|
||||
// Choose cascade based on view-space depth
|
||||
float viewDepth = - (sceneData.view * vec4(worldPos, 1.0)).z; // positive
|
||||
int ci = 0;
|
||||
if (viewDepth > sceneData.cascadeSplitsView.x) ci = 1;
|
||||
if (viewDepth > sceneData.cascadeSplitsView.y) ci = 2;
|
||||
if (viewDepth > sceneData.cascadeSplitsView.z) ci = 3;
|
||||
ci = clamp(ci, 0, MAX_CASCADES-1);
|
||||
|
||||
vec4 lclip = sceneData.lightViewProjCascades[ci] * vec4(worldPos, 1.0);
|
||||
vec3 ndc = lclip.xyz / lclip.w;
|
||||
vec2 suv = ndc.xy * 0.5 + 0.5;
|
||||
|
||||
@@ -48,7 +56,7 @@ float calcShadowVisibility(vec3 worldPos, vec3 N, vec3 L)
|
||||
float ddz = max(abs(dzdx), abs(dzdy));
|
||||
float bias = slopeBias + ddz * 0.75;
|
||||
|
||||
ivec2 dim = textureSize(shadowTex, 0);
|
||||
ivec2 dim = textureSize(shadowTex[ci], 0);
|
||||
vec2 texelSize = 1.0 / vec2(dim);
|
||||
|
||||
float baseRadius = 1.25;
|
||||
@@ -70,8 +78,9 @@ float calcShadowVisibility(vec3 worldPos, vec3 N, vec3 L)
|
||||
float pr = length(pu);
|
||||
float w = 1.0 - smoothstep(0.0, 0.65, pr);
|
||||
|
||||
float mapD = texture(shadowTex, suv + off).r;
|
||||
float mapD = texture(shadowTex[ci], suv + off).r;
|
||||
|
||||
// Standard depth shadow map: occluded when current > mapD + bias
|
||||
float occ = step(current + bias, mapD);
|
||||
|
||||
occluded += occ * w;
|
||||
|
||||
@@ -1,12 +1,18 @@
|
||||
// Maximum number of shadow cascades supported in shaders
|
||||
#define MAX_CASCADES 4
|
||||
|
||||
layout(set = 0, binding = 0) uniform SceneData{
|
||||
|
||||
mat4 view;
|
||||
mat4 proj;
|
||||
mat4 viewproj;
|
||||
mat4 lightViewProj;
|
||||
mat4 lightViewProj; // legacy single-shadow for fallback
|
||||
vec4 ambientColor;
|
||||
vec4 sunlightDirection; //w for sun power
|
||||
vec4 sunlightColor;
|
||||
// CSM data
|
||||
mat4 lightViewProjCascades[MAX_CASCADES];
|
||||
vec4 cascadeSplitsView; // positive view-space distances of far plane per cascade
|
||||
} sceneData;
|
||||
|
||||
layout(set = 1, binding = 0) uniform GLTFMaterialData{
|
||||
|
||||
@@ -18,12 +18,14 @@ layout(buffer_reference, std430) readonly buffer VertexBuffer{
|
||||
layout(push_constant) uniform PushConsts {
|
||||
mat4 render_matrix;
|
||||
VertexBuffer vertexBuffer;
|
||||
uint cascadeIndex;
|
||||
} PC;
|
||||
|
||||
void main()
|
||||
{
|
||||
Vertex v = PC.vertexBuffer.vertices[gl_VertexIndex];
|
||||
vec4 worldPos = PC.render_matrix * vec4(v.position, 1.0);
|
||||
gl_Position = sceneData.lightViewProj * worldPos;
|
||||
uint ci = min(PC.cascadeIndex, uint(MAX_CASCADES-1));
|
||||
gl_Position = sceneData.lightViewProjCascades[ci] * worldPos;
|
||||
}
|
||||
|
||||
|
||||
@@ -6,3 +6,14 @@ inline constexpr bool kUseValidationLayers = false;
|
||||
#else
|
||||
inline constexpr bool kUseValidationLayers = true;
|
||||
#endif
|
||||
|
||||
// Shadow mapping configuration
|
||||
inline constexpr int kShadowCascadeCount = 4;
|
||||
// Maximum shadow distance for CSM in view-space units
|
||||
inline constexpr float kShadowCSMFar = 50.0f;
|
||||
// Shadow map resolution used for stabilization (texel snapping). Must match actual image size.
|
||||
inline constexpr float kShadowMapResolution = 2048.0f;
|
||||
// Extra XY expansion for cascade footprint (safety against FOV/aspect changes)
|
||||
inline constexpr float kShadowCascadeRadiusScale = 1.15f;
|
||||
// Additive XY margin in world units (light-space) beyond scaled radius
|
||||
inline constexpr float kShadowCascadeRadiusMargin = 10.0f;
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
#include <core/vk_descriptors.h>
|
||||
|
||||
void DescriptorLayoutBuilder::add_binding(uint32_t binding, VkDescriptorType type)
|
||||
void DescriptorLayoutBuilder::add_binding(uint32_t binding, VkDescriptorType type, uint32_t count)
|
||||
{
|
||||
VkDescriptorSetLayoutBinding newbind{};
|
||||
newbind.binding = binding;
|
||||
newbind.descriptorCount = 1;
|
||||
newbind.descriptorCount = count;
|
||||
newbind.descriptorType = type;
|
||||
|
||||
bindings.push_back(newbind);
|
||||
|
||||
@@ -7,7 +7,7 @@ struct DescriptorLayoutBuilder
|
||||
{
|
||||
std::vector<VkDescriptorSetLayoutBinding> bindings;
|
||||
|
||||
void add_binding(uint32_t binding, VkDescriptorType type);
|
||||
void add_binding(uint32_t binding, VkDescriptorType type, uint32_t count = 1);
|
||||
|
||||
void clear();
|
||||
|
||||
|
||||
@@ -12,6 +12,8 @@
|
||||
|
||||
#include <chrono>
|
||||
#include <thread>
|
||||
#include <span>
|
||||
#include <array>
|
||||
|
||||
#include "render/vk_pipelines.h"
|
||||
#include <iostream>
|
||||
@@ -31,6 +33,7 @@
|
||||
#include "vk_resource.h"
|
||||
#include "engine_context.h"
|
||||
#include "core/vk_pipeline_manager.h"
|
||||
#include "core/config.h"
|
||||
|
||||
VulkanEngine *loadedEngine = nullptr;
|
||||
|
||||
@@ -314,9 +317,14 @@ void VulkanEngine::draw()
|
||||
RGImageHandle hGBufferAlbedo = _renderGraph->import_gbuffer_albedo();
|
||||
RGImageHandle hSwapchain = _renderGraph->import_swapchain_image(swapchainImageIndex);
|
||||
|
||||
// Create a transient shadow depth target (fixed resolution for now)
|
||||
// Create transient depth targets for cascaded shadow maps
|
||||
const VkExtent2D shadowExtent{2048, 2048};
|
||||
RGImageHandle hShadow = _renderGraph->create_depth_image("shadow.depth", shadowExtent, VK_FORMAT_D32_SFLOAT);
|
||||
std::array<RGImageHandle, kShadowCascadeCount> hShadowCascades{};
|
||||
for (int i = 0; i < kShadowCascadeCount; ++i)
|
||||
{
|
||||
std::string name = std::string("shadow.cascade.") + std::to_string(i);
|
||||
hShadowCascades[i] = _renderGraph->create_depth_image(name.c_str(), shadowExtent, VK_FORMAT_D32_SFLOAT);
|
||||
}
|
||||
|
||||
_resourceManager->register_upload_pass(*_renderGraph, get_current_frame());
|
||||
|
||||
@@ -331,7 +339,7 @@ void VulkanEngine::draw()
|
||||
}
|
||||
if (auto *shadow = _renderPassManager->getPass<ShadowPass>())
|
||||
{
|
||||
shadow->register_graph(_renderGraph.get(), hShadow, shadowExtent);
|
||||
shadow->register_graph(_renderGraph.get(), std::span<RGImageHandle>(hShadowCascades.data(), hShadowCascades.size()), shadowExtent);
|
||||
}
|
||||
if (auto *geometry = _renderPassManager->getPass<GeometryPass>())
|
||||
{
|
||||
@@ -339,7 +347,8 @@ void VulkanEngine::draw()
|
||||
}
|
||||
if (auto *lighting = _renderPassManager->getPass<LightingPass>())
|
||||
{
|
||||
lighting->register_graph(_renderGraph.get(), hDraw, hGBufferPosition, hGBufferNormal, hGBufferAlbedo, hShadow);
|
||||
lighting->register_graph(_renderGraph.get(), hDraw, hGBufferPosition, hGBufferNormal, hGBufferAlbedo,
|
||||
std::span<RGImageHandle>(hShadowCascades.data(), hShadowCascades.size()));
|
||||
}
|
||||
if (auto *transparent = _renderPassManager->getPass<TransparentPass>())
|
||||
{
|
||||
|
||||
@@ -28,6 +28,15 @@ void SamplerManager::init(DeviceManager *deviceManager)
|
||||
sampl.magFilter = VK_FILTER_LINEAR;
|
||||
sampl.minFilter = VK_FILTER_LINEAR;
|
||||
vkCreateSampler(_deviceManager->device(), &sampl, nullptr, &_defaultSamplerLinear);
|
||||
|
||||
// Shadow linear clamp sampler (border=white)
|
||||
VkSamplerCreateInfo sh = sampl;
|
||||
sh.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
|
||||
sh.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
|
||||
sh.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
|
||||
sh.compareEnable = VK_FALSE; // manual PCF
|
||||
sh.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
||||
vkCreateSampler(_deviceManager->device(), &sh, nullptr, &_shadowLinearClamp);
|
||||
}
|
||||
|
||||
void SamplerManager::cleanup()
|
||||
@@ -44,4 +53,9 @@ void SamplerManager::cleanup()
|
||||
vkDestroySampler(_deviceManager->device(), _defaultSamplerLinear, nullptr);
|
||||
_defaultSamplerLinear = VK_NULL_HANDLE;
|
||||
}
|
||||
if (_shadowLinearClamp)
|
||||
{
|
||||
vkDestroySampler(_deviceManager->device(), _shadowLinearClamp, nullptr);
|
||||
_shadowLinearClamp = VK_NULL_HANDLE;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -13,10 +13,11 @@ public:
|
||||
|
||||
VkSampler defaultLinear() const { return _defaultSamplerLinear; }
|
||||
VkSampler defaultNearest() const { return _defaultSamplerNearest; }
|
||||
VkSampler shadowLinearClamp() const { return _shadowLinearClamp; }
|
||||
|
||||
private:
|
||||
DeviceManager *_deviceManager = nullptr;
|
||||
VkSampler _defaultSamplerLinear = VK_NULL_HANDLE;
|
||||
VkSampler _defaultSamplerNearest = VK_NULL_HANDLE;
|
||||
VkSampler _shadowLinearClamp = VK_NULL_HANDLE;
|
||||
};
|
||||
|
||||
|
||||
@@ -71,10 +71,14 @@ struct GPUSceneData {
|
||||
glm::mat4 view;
|
||||
glm::mat4 proj;
|
||||
glm::mat4 viewproj;
|
||||
glm::mat4 lightViewProj;
|
||||
glm::mat4 lightViewProj; // legacy single-shadow; kept for transition
|
||||
glm::vec4 ambientColor;
|
||||
glm::vec4 sunlightDirection; // w for sun power
|
||||
glm::vec4 sunlightColor;
|
||||
|
||||
// CSM data (unused by current shaders until wired)
|
||||
glm::mat4 lightViewProjCascades[4];
|
||||
glm::vec4 cascadeSplitsView;
|
||||
};
|
||||
|
||||
enum class MaterialPass :uint8_t {
|
||||
|
||||
@@ -676,8 +676,15 @@ void RenderGraph::execute(VkCommandBuffer cmd)
|
||||
if (rec && rec->imageView != VK_NULL_HANDLE)
|
||||
{
|
||||
depthInfo = vkinit::depth_attachment_info(rec->imageView, VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL);
|
||||
if (p.depthAttachment.clearOnLoad) depthInfo.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
||||
else depthInfo.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
|
||||
if (p.depthAttachment.clearOnLoad)
|
||||
{
|
||||
depthInfo.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
||||
depthInfo.clearValue = p.depthAttachment.clear;
|
||||
}
|
||||
else
|
||||
{
|
||||
depthInfo.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
|
||||
}
|
||||
if (!p.depthAttachment.store) depthInfo.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
||||
hasDepth = true;
|
||||
if (rec->extent.width && rec->extent.height) chosenExtent = clamp_min(chosenExtent, rec->extent);
|
||||
|
||||
@@ -10,11 +10,13 @@
|
||||
#include "core/vk_pipeline_manager.h"
|
||||
#include "core/asset_manager.h"
|
||||
#include "core/vk_descriptors.h"
|
||||
#include "core/config.h"
|
||||
|
||||
#include "vk_mem_alloc.h"
|
||||
#include "vk_sampler_manager.h"
|
||||
#include "vk_swapchain.h"
|
||||
#include "render/rg_graph.h"
|
||||
#include <array>
|
||||
|
||||
void LightingPass::init(EngineContext *context)
|
||||
{
|
||||
@@ -43,10 +45,10 @@ void LightingPass::init(EngineContext *context)
|
||||
writer.update_set(_context->getDevice()->device(), _gBufferInputDescriptorSet);
|
||||
}
|
||||
|
||||
// Shadow map descriptor layout (set = 2, updated per-frame)
|
||||
// Shadow map descriptor layout (set = 2, updated per-frame). Use array of cascades
|
||||
{
|
||||
DescriptorLayoutBuilder builder;
|
||||
builder.add_binding(0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
|
||||
builder.add_binding(0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, kShadowCascadeCount);
|
||||
_shadowDescriptorLayout = builder.build(_context->getDevice()->device(), VK_SHADER_STAGE_FRAGMENT_BIT);
|
||||
}
|
||||
|
||||
@@ -95,9 +97,9 @@ void LightingPass::register_graph(RenderGraph *graph,
|
||||
RGImageHandle gbufferPosition,
|
||||
RGImageHandle gbufferNormal,
|
||||
RGImageHandle gbufferAlbedo,
|
||||
RGImageHandle shadowDepth)
|
||||
std::span<RGImageHandle> shadowCascades)
|
||||
{
|
||||
if (!graph || !drawHandle.valid() || !gbufferPosition.valid() || !gbufferNormal.valid() || !gbufferAlbedo.valid() || !shadowDepth.valid())
|
||||
if (!graph || !drawHandle.valid() || !gbufferPosition.valid() || !gbufferNormal.valid() || !gbufferAlbedo.valid())
|
||||
{
|
||||
return;
|
||||
}
|
||||
@@ -105,18 +107,21 @@ void LightingPass::register_graph(RenderGraph *graph,
|
||||
graph->add_pass(
|
||||
"Lighting",
|
||||
RGPassType::Graphics,
|
||||
[drawHandle, gbufferPosition, gbufferNormal, gbufferAlbedo, shadowDepth](RGPassBuilder &builder, EngineContext *)
|
||||
[drawHandle, gbufferPosition, gbufferNormal, gbufferAlbedo, shadowCascades](RGPassBuilder &builder, EngineContext *)
|
||||
{
|
||||
builder.read(gbufferPosition, RGImageUsage::SampledFragment);
|
||||
builder.read(gbufferNormal, RGImageUsage::SampledFragment);
|
||||
builder.read(gbufferAlbedo, RGImageUsage::SampledFragment);
|
||||
builder.read(shadowDepth, RGImageUsage::SampledFragment);
|
||||
for (size_t i = 0; i < shadowCascades.size(); ++i)
|
||||
{
|
||||
if (shadowCascades[i].valid()) builder.read(shadowCascades[i], RGImageUsage::SampledFragment);
|
||||
}
|
||||
|
||||
builder.write_color(drawHandle);
|
||||
},
|
||||
[this, drawHandle, shadowDepth](VkCommandBuffer cmd, const RGPassResources &res, EngineContext *ctx)
|
||||
[this, drawHandle, shadowCascades](VkCommandBuffer cmd, const RGPassResources &res, EngineContext *ctx)
|
||||
{
|
||||
draw_lighting(cmd, ctx, res, drawHandle, shadowDepth);
|
||||
draw_lighting(cmd, ctx, res, drawHandle, shadowCascades);
|
||||
});
|
||||
}
|
||||
|
||||
@@ -124,7 +129,7 @@ void LightingPass::draw_lighting(VkCommandBuffer cmd,
|
||||
EngineContext *context,
|
||||
const RGPassResources &resources,
|
||||
RGImageHandle drawHandle,
|
||||
RGImageHandle shadowDepth)
|
||||
std::span<RGImageHandle> shadowCascades)
|
||||
{
|
||||
EngineContext *ctxLocal = context ? context : _context;
|
||||
if (!ctxLocal || !ctxLocal->currentFrame) return;
|
||||
@@ -173,12 +178,21 @@ void LightingPass::draw_lighting(VkCommandBuffer cmd,
|
||||
VkDescriptorSet shadowSet = ctxLocal->currentFrame->_frameDescriptors.allocate(
|
||||
deviceManager->device(), _shadowDescriptorLayout);
|
||||
{
|
||||
VkImageView shadowView = resources.image_view(shadowDepth);
|
||||
DescriptorWriter writer2;
|
||||
writer2.write_image(0, shadowView, ctxLocal->getSamplers()->defaultLinear(),
|
||||
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
|
||||
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
|
||||
writer2.update_set(deviceManager->device(), shadowSet);
|
||||
const uint32_t cascadeCount = std::min<uint32_t>(kShadowCascadeCount, static_cast<uint32_t>(shadowCascades.size()));
|
||||
std::array<VkDescriptorImageInfo, kShadowCascadeCount> infos{};
|
||||
for (uint32_t i = 0; i < cascadeCount; ++i)
|
||||
{
|
||||
infos[i].sampler = ctxLocal->getSamplers()->shadowLinearClamp();
|
||||
infos[i].imageView = resources.image_view(shadowCascades[i]);
|
||||
infos[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
||||
}
|
||||
VkWriteDescriptorSet write{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET};
|
||||
write.dstSet = shadowSet;
|
||||
write.dstBinding = 0;
|
||||
write.descriptorCount = cascadeCount;
|
||||
write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
|
||||
write.pImageInfo = infos.data();
|
||||
vkUpdateDescriptorSets(deviceManager->device(), 1, &write, 0, nullptr);
|
||||
}
|
||||
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, _pipelineLayout, 2, 1, &shadowSet, 0, nullptr);
|
||||
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
#pragma once
|
||||
#include "vk_renderpass.h"
|
||||
#include <render/rg_types.h>
|
||||
#include <span>
|
||||
|
||||
class LightingPass : public IRenderPass
|
||||
{
|
||||
@@ -13,19 +14,20 @@ public:
|
||||
|
||||
const char *getName() const override { return "Lighting"; }
|
||||
|
||||
// Register lighting; consumes GBuffer + CSM cascades.
|
||||
void register_graph(class RenderGraph *graph,
|
||||
RGImageHandle drawHandle,
|
||||
RGImageHandle gbufferPosition,
|
||||
RGImageHandle gbufferNormal,
|
||||
RGImageHandle gbufferAlbedo,
|
||||
RGImageHandle shadowDepth);
|
||||
std::span<RGImageHandle> shadowCascades);
|
||||
|
||||
private:
|
||||
EngineContext *_context = nullptr;
|
||||
|
||||
VkDescriptorSetLayout _gBufferInputDescriptorLayout = VK_NULL_HANDLE;
|
||||
VkDescriptorSet _gBufferInputDescriptorSet = VK_NULL_HANDLE;
|
||||
VkDescriptorSetLayout _shadowDescriptorLayout = VK_NULL_HANDLE; // set=2
|
||||
VkDescriptorSetLayout _shadowDescriptorLayout = VK_NULL_HANDLE; // set=2 (array)
|
||||
|
||||
VkPipelineLayout _pipelineLayout = VK_NULL_HANDLE;
|
||||
VkPipeline _pipeline = VK_NULL_HANDLE;
|
||||
@@ -34,7 +36,7 @@ private:
|
||||
EngineContext *context,
|
||||
const class RGPassResources &resources,
|
||||
RGImageHandle drawHandle,
|
||||
RGImageHandle shadowDepth);
|
||||
std::span<RGImageHandle> shadowCascades);
|
||||
|
||||
DeletionQueue _deletionQueue;
|
||||
};
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
#include "vk_renderpass_shadow.h"
|
||||
|
||||
#include <unordered_set>
|
||||
#include <string>
|
||||
|
||||
#include "core/engine_context.h"
|
||||
#include "render/rg_graph.h"
|
||||
@@ -24,9 +25,13 @@ void ShadowPass::init(EngineContext *context)
|
||||
if (!_context || !_context->pipelines) return;
|
||||
|
||||
// Build a depth-only graphics pipeline for shadow map rendering
|
||||
// Keep push constants matching current shader layout for now
|
||||
VkPushConstantRange pc{};
|
||||
pc.offset = 0;
|
||||
pc.size = sizeof(GPUDrawPushConstants);
|
||||
// Push constants layout in shadow.vert is mat4 + device address + uint, rounded to 16 bytes
|
||||
const uint32_t pcRaw = static_cast<uint32_t>(sizeof(GPUDrawPushConstants) + sizeof(uint32_t));
|
||||
const uint32_t pcAligned = (pcRaw + 15u) & ~15u; // 16-byte alignment to match std430 expectations
|
||||
pc.size = pcAligned;
|
||||
pc.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
|
||||
|
||||
GraphicsPipelineCreateInfo info{};
|
||||
@@ -40,11 +45,11 @@ void ShadowPass::init(EngineContext *context)
|
||||
b.set_cull_mode(VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE);
|
||||
b.set_multisampling_none();
|
||||
b.disable_blending();
|
||||
// Reverse-Z depth test & depth-only pipeline
|
||||
// Reverse-Z depth test for shadow maps (clear=0.0, GREATER_OR_EQUAL)
|
||||
b.enable_depthtest(true, VK_COMPARE_OP_GREATER_OR_EQUAL);
|
||||
b.set_depth_format(VK_FORMAT_D32_SFLOAT);
|
||||
|
||||
// Static depth bias to help with surface acne (will tune later)
|
||||
// Static depth bias to help with surface acne (tune later)
|
||||
b._rasterizer.depthBiasEnable = VK_TRUE;
|
||||
b._rasterizer.depthBiasConstantFactor = 2.0f;
|
||||
b._rasterizer.depthBiasSlopeFactor = 2.0f;
|
||||
@@ -65,53 +70,61 @@ void ShadowPass::execute(VkCommandBuffer)
|
||||
// Shadow rendering is done via the RenderGraph registration.
|
||||
}
|
||||
|
||||
void ShadowPass::register_graph(RenderGraph *graph, RGImageHandle shadowDepth, VkExtent2D extent)
|
||||
void ShadowPass::register_graph(RenderGraph *graph, std::span<RGImageHandle> cascades, VkExtent2D extent)
|
||||
{
|
||||
if (!graph || !shadowDepth.valid()) return;
|
||||
if (!graph || cascades.empty()) return;
|
||||
|
||||
graph->add_pass(
|
||||
"ShadowMap",
|
||||
RGPassType::Graphics,
|
||||
[shadowDepth](RGPassBuilder &builder, EngineContext *ctx)
|
||||
{
|
||||
// Reverse-Z depth clear to 0.0
|
||||
VkClearValue clear{}; clear.depthStencil = {0.f, 0};
|
||||
builder.write_depth(shadowDepth, true, clear);
|
||||
for (uint32_t i = 0; i < cascades.size(); ++i)
|
||||
{
|
||||
RGImageHandle shadowDepth = cascades[i];
|
||||
if (!shadowDepth.valid()) continue;
|
||||
|
||||
// Ensure index/vertex buffers are tracked as reads (like Geometry)
|
||||
if (ctx)
|
||||
std::string passName = std::string("ShadowMap[") + std::to_string(i) + "]";
|
||||
graph->add_pass(
|
||||
passName.c_str(),
|
||||
RGPassType::Graphics,
|
||||
[shadowDepth](RGPassBuilder &builder, EngineContext *ctx)
|
||||
{
|
||||
const DrawContext &dc = ctx->getMainDrawContext();
|
||||
std::unordered_set<VkBuffer> indexSet;
|
||||
std::unordered_set<VkBuffer> vertexSet;
|
||||
auto collect = [&](const std::vector<RenderObject> &v)
|
||||
{
|
||||
for (const auto &r : v)
|
||||
{
|
||||
if (r.indexBuffer) indexSet.insert(r.indexBuffer);
|
||||
if (r.vertexBuffer) vertexSet.insert(r.vertexBuffer);
|
||||
}
|
||||
};
|
||||
collect(dc.OpaqueSurfaces);
|
||||
// Transparent surfaces are ignored for shadow map in this simple pass
|
||||
// Reverse-Z depth clear to 0.0
|
||||
VkClearValue clear{}; clear.depthStencil = {0.f, 0};
|
||||
builder.write_depth(shadowDepth, true, clear);
|
||||
|
||||
for (VkBuffer b : indexSet)
|
||||
builder.read_buffer(b, RGBufferUsage::IndexRead, 0, "shadow.index");
|
||||
for (VkBuffer b : vertexSet)
|
||||
builder.read_buffer(b, RGBufferUsage::StorageRead, 0, "shadow.vertex");
|
||||
}
|
||||
},
|
||||
[this, shadowDepth, extent](VkCommandBuffer cmd, const RGPassResources &res, EngineContext *ctx)
|
||||
{
|
||||
draw_shadow(cmd, ctx, res, shadowDepth, extent);
|
||||
});
|
||||
// Ensure index/vertex buffers are tracked as reads (like Geometry)
|
||||
if (ctx)
|
||||
{
|
||||
const DrawContext &dc = ctx->getMainDrawContext();
|
||||
std::unordered_set<VkBuffer> indexSet;
|
||||
std::unordered_set<VkBuffer> vertexSet;
|
||||
auto collect = [&](const std::vector<RenderObject> &v)
|
||||
{
|
||||
for (const auto &r : v)
|
||||
{
|
||||
if (r.indexBuffer) indexSet.insert(r.indexBuffer);
|
||||
if (r.vertexBuffer) vertexSet.insert(r.vertexBuffer);
|
||||
}
|
||||
};
|
||||
collect(dc.OpaqueSurfaces);
|
||||
// Ignore transparent for shadow map
|
||||
|
||||
for (VkBuffer b : indexSet)
|
||||
builder.read_buffer(b, RGBufferUsage::IndexRead, 0, "shadow.index");
|
||||
for (VkBuffer b : vertexSet)
|
||||
builder.read_buffer(b, RGBufferUsage::StorageRead, 0, "shadow.vertex");
|
||||
}
|
||||
},
|
||||
[this, shadowDepth, extent, i](VkCommandBuffer cmd, const RGPassResources &res, EngineContext *ctx)
|
||||
{
|
||||
draw_shadow(cmd, ctx, res, shadowDepth, extent, i);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
void ShadowPass::draw_shadow(VkCommandBuffer cmd,
|
||||
EngineContext *context,
|
||||
const RGPassResources &/*resources*/,
|
||||
RGImageHandle /*shadowDepth*/,
|
||||
VkExtent2D extent) const
|
||||
VkExtent2D extent,
|
||||
uint32_t cascadeIndex) const
|
||||
{
|
||||
EngineContext *ctxLocal = context ? context : _context;
|
||||
if (!ctxLocal || !ctxLocal->currentFrame) return;
|
||||
@@ -166,6 +179,12 @@ void ShadowPass::draw_shadow(VkCommandBuffer cmd,
|
||||
const DrawContext &dc = ctxLocal->getMainDrawContext();
|
||||
|
||||
VkBuffer lastIndexBuffer = VK_NULL_HANDLE;
|
||||
|
||||
struct ShadowPC
|
||||
{
|
||||
GPUDrawPushConstants draw;
|
||||
uint32_t cascadeIndex;
|
||||
};
|
||||
for (const auto &r : dc.OpaqueSurfaces)
|
||||
{
|
||||
if (r.indexBuffer != lastIndexBuffer)
|
||||
@@ -174,11 +193,11 @@ void ShadowPass::draw_shadow(VkCommandBuffer cmd,
|
||||
vkCmdBindIndexBuffer(cmd, r.indexBuffer, 0, VK_INDEX_TYPE_UINT32);
|
||||
}
|
||||
|
||||
GPUDrawPushConstants pc{};
|
||||
pc.worldMatrix = r.transform;
|
||||
pc.vertexBuffer = r.vertexBufferAddress;
|
||||
vkCmdPushConstants(cmd, layout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(GPUDrawPushConstants), &pc);
|
||||
|
||||
ShadowPC spc{};
|
||||
spc.draw.worldMatrix = r.transform;
|
||||
spc.draw.vertexBuffer = r.vertexBufferAddress;
|
||||
spc.cascadeIndex = cascadeIndex;
|
||||
vkCmdPushConstants(cmd, layout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(ShadowPC), &spc);
|
||||
vkCmdDrawIndexed(cmd, r.indexCount, 1, r.firstIndex, 0, 0);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2,14 +2,13 @@
|
||||
|
||||
#include "vk_renderpass.h"
|
||||
#include <render/rg_types.h>
|
||||
#include <span>
|
||||
|
||||
class RenderGraph;
|
||||
class EngineContext;
|
||||
class RGPassResources;
|
||||
|
||||
// Depth-only directional shadow map pass (skeleton)
|
||||
// - Writes a depth image using reversed-Z (clear=0)
|
||||
// - Draw function will be filled in a later step
|
||||
// Depth-only directional shadow map pass (CSM-ready API)
|
||||
class ShadowPass : public IRenderPass
|
||||
{
|
||||
public:
|
||||
@@ -19,8 +18,8 @@ public:
|
||||
|
||||
const char *getName() const override { return "ShadowMap"; }
|
||||
|
||||
// Register the depth-only pass into the render graph
|
||||
void register_graph(RenderGraph *graph, RGImageHandle shadowDepth, VkExtent2D extent);
|
||||
// Register N cascades; one graphics pass per cascade.
|
||||
void register_graph(RenderGraph *graph, std::span<RGImageHandle> cascades, VkExtent2D extent);
|
||||
|
||||
private:
|
||||
EngineContext *_context = nullptr;
|
||||
@@ -29,5 +28,6 @@ private:
|
||||
EngineContext *context,
|
||||
const RGPassResources &resources,
|
||||
RGImageHandle shadowDepth,
|
||||
VkExtent2D extent) const;
|
||||
VkExtent2D extent,
|
||||
uint32_t cascadeIndex) const;
|
||||
};
|
||||
|
||||
@@ -8,6 +8,9 @@
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
|
||||
#include "glm/gtx/norm.inl"
|
||||
#include "glm/gtx/compatibility.hpp"
|
||||
#include <algorithm>
|
||||
#include "core/config.h"
|
||||
|
||||
void SceneManager::init(EngineContext *context)
|
||||
{
|
||||
@@ -103,32 +106,123 @@ void SceneManager::update_scene()
|
||||
sceneData.proj = projection;
|
||||
sceneData.viewproj = projection * view;
|
||||
|
||||
// Build a simple directional light view-projection (reversed-Z orthographic)
|
||||
// Centered around the camera for now (non-cascaded, non-stabilized)
|
||||
// Build cascaded directional light view-projection matrices
|
||||
{
|
||||
const glm::vec3 camPos = glm::vec3(glm::inverse(view)[3]);
|
||||
glm::vec3 L = glm::normalize(-glm::vec3(sceneData.sunlightDirection));
|
||||
if (glm::length(L) < 1e-5f) L = glm::vec3(0.0f, -1.0f, 0.0f);
|
||||
using namespace glm;
|
||||
const vec3 camPos = vec3(inverse(view)[3]);
|
||||
vec3 L = normalize(-vec3(sceneData.sunlightDirection));
|
||||
if (!glm::all(glm::isfinite(L)) || glm::length2(L) < 1e-10f)
|
||||
L = glm::vec3(0.0f, -1.0f, 0.0f);
|
||||
|
||||
const glm::vec3 worldUp(0.0f, 1.0f, 0.0f);
|
||||
glm::vec3 right = glm::normalize(glm::cross(worldUp, L));
|
||||
glm::vec3 up = glm::normalize(glm::cross(L, right));
|
||||
if (glm::length2(right) < 1e-6f)
|
||||
const glm::vec3 worldUp(0,1,0), altUp(0,0,1);
|
||||
glm::vec3 upPick = (std::abs(glm::dot(worldUp, L)) > 0.99f) ? altUp : worldUp;
|
||||
glm::vec3 right = glm::normalize(glm::cross(upPick, L));
|
||||
glm::vec3 up = glm::normalize(glm::cross(L, right));
|
||||
|
||||
const float csmFar = kShadowCSMFar; // configurable shadow distance
|
||||
const float lambda = 0.8f; // split weighting
|
||||
const int cascades = kShadowCascadeCount;
|
||||
|
||||
float splits[4] = {0, 0, 0, 0};
|
||||
for (int i = 1; i <= cascades; ++i)
|
||||
{
|
||||
right = glm::vec3(1, 0, 0);
|
||||
up = glm::normalize(glm::cross(L, right));
|
||||
float p = (float) i / (float) cascades;
|
||||
float logd = nearPlane * std::pow(csmFar / nearPlane, p);
|
||||
float lind = nearPlane + (csmFar - nearPlane) * p;
|
||||
float d = glm::mix(lind, logd, lambda);
|
||||
if (i - 1 < 4) splits[i - 1] = d;
|
||||
}
|
||||
sceneData.cascadeSplitsView = vec4(splits[0], splits[1], splits[2], splits[3]);
|
||||
|
||||
const float orthoRange = 40.0f; // XY half-extent
|
||||
const float nearDist = 0.1f;
|
||||
const float farDist = 200.0f;
|
||||
const glm::vec3 lightPos = camPos - L * 100.0f;
|
||||
glm::mat4 viewLight = glm::lookAtRH(lightPos, camPos, up);
|
||||
// Standard RH ZO ortho with near<far, then explicitly flip Z to reversed-Z
|
||||
glm::mat4 projLight = glm::orthoRH_ZO(-orthoRange, orthoRange, -orthoRange, orthoRange,
|
||||
nearDist, farDist);
|
||||
mat4 invView = inverse(view);
|
||||
|
||||
sceneData.lightViewProj = projLight * viewLight;
|
||||
auto buildCascade = [&](float nearD, float farD) -> mat4 {
|
||||
// Frustum in view-space (RH, forward -Z)
|
||||
float tanHalfFov = tanf(fov * 0.5f);
|
||||
float yn = tanHalfFov * nearD;
|
||||
float xn = yn * aspect;
|
||||
float yf = tanHalfFov * farD;
|
||||
float xf = yf * aspect;
|
||||
|
||||
vec3 cornersV[8] = {
|
||||
{-xn, -yn, -nearD}, {xn, -yn, -nearD}, {xn, yn, -nearD}, {-xn, yn, -nearD},
|
||||
{-xf, -yf, -farD}, {xf, -yf, -farD}, {xf, yf, -farD}, {-xf, yf, -farD}
|
||||
};
|
||||
vec3 cornersW[8];
|
||||
vec3 centerWS(0.0f);
|
||||
for (int i = 0; i < 8; ++i)
|
||||
{
|
||||
vec3 w = vec3(invView * vec4(cornersV[i], 1.0f));
|
||||
cornersW[i] = w;
|
||||
centerWS += w;
|
||||
}
|
||||
centerWS *= (1.0f / 8.0f);
|
||||
|
||||
// Initial light view
|
||||
const float lightDist = 100.0f;
|
||||
vec3 lightPos = centerWS - L * lightDist;
|
||||
mat4 viewLight = lookAtRH(lightPos, centerWS, up);
|
||||
|
||||
// Compute symmetric bounds around center in light space
|
||||
vec2 centerLS = vec2(viewLight * vec4(centerWS, 1.0f));
|
||||
float minZ = 1e9f, maxZ = -1e9f;
|
||||
float radius = 0.0f;
|
||||
for (int i = 0; i < 8; ++i)
|
||||
{
|
||||
vec3 p = vec3(viewLight * vec4(cornersW[i], 1.0f));
|
||||
minZ = std::min(minZ, p.z);
|
||||
maxZ = std::max(maxZ, p.z);
|
||||
radius = std::max(radius, glm::length(vec2(p.x, p.y) - centerLS));
|
||||
}
|
||||
|
||||
// Pad extents
|
||||
radius *= 1.05f;
|
||||
float sliceLen = farD - nearD;
|
||||
float zPad = std::max(50.0f, 0.2f * sliceLen);
|
||||
// Two-sided along light direction: include casters between light and slice
|
||||
float nearLS = 0.01f;
|
||||
float farLS = -minZ + zPad;
|
||||
|
||||
// Stabilize by snapping to shadow texel grid
|
||||
float texelSize = (2.0f * radius) / kShadowMapResolution;
|
||||
vec2 snapped = floor(centerLS / texelSize) * texelSize;
|
||||
vec2 deltaLS = snapped - centerLS;
|
||||
vec3 shiftWS = right * deltaLS.x + up * deltaLS.y;
|
||||
vec3 centerSnapped = centerWS + shiftWS;
|
||||
vec3 lightPosSnapped = centerSnapped - L * lightDist;
|
||||
viewLight = lookAtRH(lightPosSnapped, centerSnapped, up);
|
||||
|
||||
// Recompute z-range with snapped view
|
||||
centerLS = vec2(viewLight * vec4(centerSnapped, 1.0f));
|
||||
minZ = 1e9f; maxZ = -1e9f; radius = 0.0f;
|
||||
for (int i = 0; i < 8; ++i)
|
||||
{
|
||||
vec3 p = vec3(viewLight * vec4(cornersW[i], 1.0f));
|
||||
minZ = std::min(minZ, p.z);
|
||||
maxZ = std::max(maxZ, p.z);
|
||||
radius = std::max(radius, glm::length(vec2(p.x, p.y) - centerLS));
|
||||
}
|
||||
// Keep near plane close to the light to include forward casters
|
||||
nearLS = 0.01f;
|
||||
farLS = -minZ + zPad;
|
||||
|
||||
float left = centerLS.x - radius;
|
||||
float rightE = centerLS.x + radius;
|
||||
float bottom = centerLS.y - radius;
|
||||
float top = centerLS.y + radius;
|
||||
|
||||
mat4 projLight = orthoRH_ZO(left, rightE, bottom, top, nearLS, farLS);
|
||||
return projLight * viewLight;
|
||||
};
|
||||
|
||||
for (int i = 0; i < cascades; ++i)
|
||||
{
|
||||
float nearD = (i == 0) ? nearPlane : splits[i - 1];
|
||||
float farD = splits[i];
|
||||
sceneData.lightViewProjCascades[i] = buildCascade(nearD, farD);
|
||||
}
|
||||
// For legacy paths, keep first cascade in single matrix
|
||||
sceneData.lightViewProj = sceneData.lightViewProjCascades[0];
|
||||
}
|
||||
|
||||
auto end = std::chrono::system_clock::now();
|
||||
|
||||
Reference in New Issue
Block a user